ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage : First year students

Subject : General Chemistry 1 - Lecture 3A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Methods of expressing concentrations-

Properties of Solutions

A **solution** is a homogeneous mixture of two or more substances. It is composed of one or more **solutes**, dissolved in a **solvent**.

For example, when sugar (the solute) is added to water (the solvent), the sugar dissolves in the water to produce a solution.

For the cases where the solvent is water, the homogeneous mixture is referred to as an **aqueous solution.**

Electrolytic solutions:

Are solutions formed from solutes that are soluble *ionic* compounds(electrolytes).

They dissociate in solution to produce ions that behave as charge carriers.

Solutions of electrolytes are good conductors of electricity.

For example, sodium chloride dissolving in water:

 $NaCl(s) + H_2O \rightarrow Na^+(aq) + Cl^-(aq)$ Solid sodium chloride dissolved sodium chloride

Nonelectrolytic Solutions:

Are solutions formed from non dissociating *molecular* solutes (non electrolytes), and these solutions are nonconducting.

For example, dissolving Glucose sugar in water:

$$C_6H_{12}O_6(s) + H_2O \rightarrow C_6H_{12}O_6(aq)$$

Solid glucose Dissolved glucose

Concentration:

Concentration represents the amount of dissolved substance (solute) per unit amount of solvent, It can be expressed by:

- 1) physical units: mass-volume
- 2) chemical units: equivalent weight- Molecular weight(mole).

Expressing concentrations By Physical units:

A. Percent concentration %

It can be expressed in several ways such as:

1 Weight percent (w/w) %

Weight percent
$$(\frac{w}{w})\% = \frac{weight \ of \ solute}{weight \ of \ solution} \times 100\%$$

e.g: Nitric acid (70%) solution, means that it contains (70 g) of HNO₃ for each (100 g) of solution.

Example:

Intravenous dextrose injections are given to restore sugar levels in patients. What is the sugar mass dissolved in 25 g of a 10 % dextrose solution?

Solution:

Weight percent
$$(\frac{w}{w})\% = \frac{weight \ of \ solute}{weight \ of \ solution} \times 100\%$$

10 % =
$$\frac{weight\ of\ solute}{25}$$
 x 100 %

Weight of solute (dextrose sugar) =
$$\frac{10x25}{100}$$
 = 2.5 g

Exercise:

A metal alloy contains 15.8% nickel (w/w)%. What mass of the metal alloy would contain 36.5 g of nickel?

②volume percent
$$(v/v)\%$$

Volume percent $(\frac{v}{v})\% = \frac{volume\ of\ solute}{volume\ of\ solution} \times 100\%$

It is commonly used to specify the concentration of a solution prepared by diluting a pure liquid with another liquid.(e.g. perfumes) **e.g.** 5% solution of a perfume usually describes a solution prepared by diluting 5 mL of perfume with enough solvent(ethanol)to give 100 mL of solution.

Example:

What is the volume of acetic acid needed for the preparation of 500 mL of vinegar, aqueous solution of 7.5% (v/v) of acetic acid? Solution:

Volume percent
$$(\frac{V}{V})\% = \frac{volume \ of \ solute}{volume \ of \ solution} \times 100\%$$

$$7.5\% = \frac{volume\ of\ acetic\ acid}{500\ mL} \times 100\%$$

Volume of acetic acid =
$$\frac{7.5 \times 500}{100}$$
 = 37.5 mL

Then the vinegar solution is prepared by dissolving 37.5 mL of acetic acid in water and completing the volume to 500 mL

③weight/volume percent
$$\left(\frac{w}{v}\right)$$
%

weight/volume percent
$$\left(\frac{w}{v}\right)\% = \frac{weight\ of\ solute(gm)}{volume\ of\ solution(\ mL)} \times 100\%$$

It is often employed to indicate the composition of dilute aqueous solution of solid dissolved in water. **e.g**: 5% aqueous potassium nitrate refers to a solution prepared by dissolving (5 g) of KNO_3 in sufficient amount of water to give (100 mL) of solution .

Calculate the $\left(\frac{w}{v}\right)$ % concentration of the aqueous sodium chloride solution prepared by dissolving 5 g of NaCl in water and completing the volume to 250 mL.

Answer:

$$\left(\frac{w}{v}\right)\% = \frac{weight\ of\ solute(g)}{volume\ of\ solution(mL)} \times 100\%$$

$$\left(\frac{w}{v}\right)\% = \frac{5\ gm}{250\ mL} \times 100\% = 2\%$$

Practice exercises:

- a.Calculate the (w/v)% of 0.2 L of solution containing 15 g KCl.
- b. Calculate the mass (in g) of sodium hydroxide required to make $2\ L$ of a
- **1 % (w/v)% solution**
- c. Calculate the volume (in mL) of a 25 % (w/v)% solution containing 10 g NaCl.

2.Expressing concentrations By chemical units:

The mole:

Is a unit for the amount of a chemical species, always associated with a chemical formula and represents Avogadro's number (6.022×10^{23}) of particles represented by that formula .

<u>Molar Mass</u>: Is the mass in grams of 1 mole of the substance, it is calculated by summing the atomic masses of all the atoms appearing in a chemical formula.

Molar mass =
$$\sum atomic mass$$

Example :- Molar mass of glucose $C_6H_{12}O_6$:

$$M_{C_6H_{12}O_6} = \sum (6mole\ carbon + 12mole\ hydrogen + 6mole\ oxygen) atom$$

$$M_{C_6H_{12}O_6} = 6\ x12.0 + 12\ x\ 1.0 + 6\ x\ 16.0 = 180\ \text{g/mole}$$

Important Relations:-

Molar mass(M.wt) units are g/mole or mg/mmole

No. of moles =
$$\frac{\text{wt}(g)}{\text{M. wt}(g)}$$

Wt (g) = No. of moles x M.wt

Mole = 10^3 mmole , mmole = 10^{-3} mole

Example:

How many grams of Na^+ (M.wt = 22.99 g /mole) are contained in (25 g) of Na_2SO_4 (M.wt = 142 g /mole)?

Solution:

moles of
$$Na_2SO_4$$
 $(n_{Na_2SO_4}) = \frac{Wt_{(g)}Na_2SO_4}{M.Wt_{(g)}Na_2SO_4} = \frac{25}{142} = 0.176$

No. of moles of Na⁺ (n_{Na^+})= Number of moles $Na_2SO_4 \times 2$

No. of moles of Na⁺ (n_{Na}^+) = 0.176 x 2 = 0.352 moles Na⁺

Wt (g) = No. of moles x M.wt

Weight of $Na^+(g) = \text{moles } Na^+ \times 22.99(g) Na^+$

Weight of $Na^+(g) = 0.352 \times 22.99 = 8.10 (g) Na^+$

Hints

-No. of moles of Na⁺ (n_{Na}^+) in NaCl is = 1 x No. of moles of NaCl as

NaCl
$$\longrightarrow$$
 Na⁺ + Cl⁻

1 mole

1 mole

No. of moles of Na⁺ (n_{Na}^+) in Na₃PO₄ is = 3 x No. of moles of Na₃PO₄ as

$$Na_3PO_4 \longrightarrow 3Na^+ + PO_4^{3-} (1 moleNa_3PO_4 \longrightarrow 3 molesNa^+)$$

Exercise:

How many grams of Na₊ (22.99 g /mole) are contained in 25 g of Na₃PO₄ (164 g /mole)?

Exercise:

- 1. No. of moles of $K^+(n_{k^+})$ in $K_2SO_4 = ?$
- 2. No. of moles of $K^+(n_{k+})$ in $KNO_3 = ?$
- 3. No. of moles of $Mg^{2+}(n_{Mg^{2+}})$ in $MgSO_4 = ?$
- 4. No. of moles of Fe³⁺ ($n_{\text{Fe}3+}$) in FeCl₃ = ?
- 5. No. of moles of $Cl^{-}(n_{Cl-})$ in **FeCl₃ =?**

Molar concentration (M):

Molarity: Number of moles of solute per liter of solution

Or Number of m moles of solute per milliliter of solution.

$$\mathbf{M} = \frac{\text{number of moles of solute}}{\text{volume of solution(liter)}}$$

Molarity calculations:

$$Molarity(M) = \frac{No.of\ moles}{volume(L)} = \frac{\frac{wt_{(g)}}{M.wt}}{V_L}$$

$$\label{eq:VL} \textbf{Molarity(M)} = \frac{wt_{(g)}}{\text{M.wt x V}_L} \hspace{1cm} V_L = \frac{V_{mL}}{1000}$$

Molarity(
$$M$$
) = $\frac{\text{wt}_{(g)}}{\text{M.wt x} \frac{\text{VmL}}{1000}}$

$$Molarity(M) = \frac{wt_{(g)} \, x \, 1000}{M. \, wt \, x \, V_{mL}}$$

Example: calculate the molar concentration of KNO₃ aqueous solution that contains (2.02 g) of KNO₃ (101 g /mole) in (2 L) of solution?

Solution:

Molarity(M) =
$$\frac{wt_{(g)}}{M.wt \, x \, V_L} = \frac{2.02_{(g)}}{101 \, x \, 2 \, L} = 0.1 \, M$$

Or

$$Molarity(M) = \frac{wt_{(g)} \times 1000}{M.wt \times V_{mL}} = \frac{2.02_{(g)} \times 1000}{101 \times 2000 \text{ mL}} = 0.1 \text{ M}$$

How many millilitres of 12 M hydrochloric acid contain 7.30 g of HCl solute (36.5 g/mole)?

Solution:

$$\begin{split} & \text{Molarity}(\text{M}) = \frac{wt_{(g)} \text{ x } 1000}{\text{M. wt x } V_{mL}} \\ & V(\text{mL}) = \frac{wt_{(g)} \text{ x } 1000}{\text{M.wt x Molarity}(\text{M})} = \frac{7.3 \text{ x } 1000}{36.5 \text{ x } 12} = 16.7 \text{ mL} \end{split}$$

Preaparation of molar solutions

<u>Molarity</u> represents the number of moles of solute in one liter of solution or number of mmole in one milliliter.

For example, a sulfuric acid(98 g/mole) solution with an analytical concentration of (1 M) can be prepared by dissolving (1 mole) or (98 g) of H_2SO_4 in water and diluting to exactly (1 L).

{ Molarity(M) =
$$\frac{No.of\ moles}{Vol.(L)} = \frac{1\ mole}{1\ L} = 1M$$
 }

* Example: Describe the preparation of (2 liter) of (0.18 M) BaCl₂ from BaCl₂.2H₂O (244.3 g/mole).

Solution:

$$\begin{array}{ccc} BaCl_2.2H_2O & \rightarrow & BaCl_2 + 2H_2O \\ 1mole & 1mole & 2mole \end{array}$$

Each (1mole BaCl_{2.}2H₂O) gives (1 mole BaCl₂).

for 2 liter solution we have

No. of moles =
$$\frac{weight(g)}{M.wt}$$
(1)

$$Molarity(M) = \frac{No.of\ moles}{volume(L)}$$

$$\frac{weight(g)}{M.wt} = molarity M x volume(L)$$

Weight (g) = molarity M x volume(L) x M.wt

Weight of $BaCl_2.2H_2O(g) = 0.18 \times 2 \times 244.3 = 87.95 \text{ g}$ $BaCl_2.2H_2O$ The solution is prepared by dissolving 87.95gm $BaCl_2.2H_2O$ in water and complete the volume to 2 L

Example:

Describe the preparation of 500 mL of 0.0740 M Cl⁻ solution from solid BaCl₂ (208 g/mole).

Solution:

$$BaCl_2 \longrightarrow Ba^{2+} + 2Cl^{-}$$

No of moles = Molarity (mole / liter) x Volume (Liters)

moles
$$C1^- = 0.0740 \times 0.5 = 0.037 \text{ moles } C1^-$$

No.of moles $BaCl_2$ needed = $\frac{1}{2}$ (No. of moles of Cl^-)

No .moles BaCl₂ needed =
$$\frac{0.037}{2}$$
 = 0.0185 mole

weight of $BaCl_2 = No.$ of moles $BaCl_2 \times M.$ wt

weight of
$$BaCl_2 = 0.0185 \times 208 = 3.85 \text{ grams}$$

Then the required solution is prepared by dissolving 3.85 g of BaCl₂ in water and diluting it to 0.5 L (500 mL).

Calculate the number of molecules (particles) of NaCl (58.5 g/mole) present in 1 litre of 0.1 M solution.

solution:

Each 1 mole contains Avogadro's number (6.022 x 10²³) of molecules then

No. of moles = Molarity(M) \times V(liter) = 0.1 \times 1 = 0.1 mole

No. of moles =
$$\frac{No.of\ molecules}{6.02 \times 10^{23}}$$

No. of molecules = No. of moles x $6.02 \times 10^{23} = 0.1 \times 6.02 \times 10^{23}$

No. of molecules = 6.02×10^{22} molecules

Conversion to molarity:

Molarity (M) =
$$\frac{\left(\frac{w}{v}\right)\% \times 10}{M.wt}$$

Example:

Calculate the Molarity of the solution that is 20(w/v)% of KCl (74.5 g /mole)?

solution:

Molarity(M) =
$$\frac{\left(\frac{W}{V}\right)\% x10}{M. wt}$$

Molarity(M) =
$$\frac{20 \times 10}{74.5}$$
 = 2.68 M

طريقه ثانيه للحل

Checking by using $Molarity(M) = \frac{wt_{(g)} \times 1000}{M.wt \times V_{mL}}$

$$Molarity(M) = \frac{20_{(g)} \, x \, 1000}{74.5 \, x \, 100_{mL}} = 2.68 \; M$$

Conversions:

1.Molarity to m mole/ L

 $Molarity(M) \times 1000 = m mol/L$

2. Molarity to mg/dL

$$mg/dL = m mol/L x \left(\frac{Mwt}{10}\right)$$

Then C (mg/dL) =
$$\frac{Molarity(M) \times 1000 \times M.wt}{10}$$

 $C(mg/dL) = Molarity(M) \times M.wt \times 100$

3.
$$\left(\frac{w}{v}\right)$$
% to mg/dL

as Molarity(M) =
$$\frac{\left(\frac{w}{v}\right)\% x10}{M. wt}$$

Then
$$C(mg/dL) = \frac{\left(\frac{w}{v}\right)\% \times 10}{M.wt} \times M.wt \times 100$$

$$C (mg/dL) = \left(\frac{w}{v}\right) \% x1000$$

Example

A solution of heparin sodium, an anticoagulant for blood, contains 1.8 g of heparin sodium dissolved to make a final volume of 15 mL of solution. What is the concentration of this solution in $(\frac{w}{v})\%$ and in mg/dL?

SOLUTION

$$(\frac{w}{V})\% = \frac{weight\ of\ solute(g)}{volume\ of\ solution(mL)} \times 100\%$$

$$(\frac{w}{V})\% = \frac{weight \ of \ heparin(g)}{volume \ of \ solution(mL)} \times 100\%$$

$$(\frac{w}{v})\% = \frac{1.8(g)}{15(mL)} \times 100\% = 12\%$$

$$\left(\frac{\mathbf{w}}{\mathbf{v}}\right)$$
% x 1000 = mg/dL

$$12 \times 1000 = 12000 \text{ mg} / dL$$

How many grams of NaCl are needed to prepare 250 mL of a 1.5% (w/v) saline solution?

SOLUTION

$$(\frac{w}{V})\% = \frac{weight \ of \ solute(g)}{volume \ of \ solution(mL)} \ x \ 100\%$$

Weight of solute (g) =
$$\frac{(volume\ of\ solution)ml\ x\ (\frac{w}{V})\%}{100}$$

Weight of solute (g) =
$$\frac{(250)ml \, x \, (1.5)\%}{100}$$
 = 3.75 g NaCl

Exercises:

- 1. What mass of glucose is needed to prepare 125 mL of 16% (w/v) glucose ($C_6H_{12}O_6$) solution?
- **2. What is the** Volume of aqueous solution needed to prepare a 2 % (w/v) KCl solution from 1.20 g KCl.?
- 3. Calculate the concentration in $(\frac{w}{v})\%$ of the solution of 8.6 mg/dl of Ca²⁺
- 4. Which of the following contains the largest number of molecules :
 - a) 66g of CO₂ (44 g/mole) b) 80 g of NaOH (40 g/mole)
 - c) 32 g of CH₃OH (32 g/mole)
- 5. Describe the preparation of 500 mL of 0.0740 M Cl^- aqueous solution from solid $CaCl_2.2H_2O$ (147 g/mole).
- 6. Calculate the weight in grams of solid K_2SO_4 (174.26 g/mole) required to prepare 500 mL of 0.04 M aqueous solution of K^+ .