

Al-Mustaqbal University

College of Engineering & Technology

Biomedical Engineering Department

Subject Name: Physics

1st Class, First Semester

Subject Code: [Insert Subject Code Here]

Academic Year: 2024-2025

Lecturer: Assist lect. Hiba Diaa Alrubaie

Email: hiba.diaa.abdulameer@uomus.edu.iq

Lecture No.:-6

Lecture Title: [Sound]

Sound is a form of mechanical wave that propagates through a medium (such as air, water, or solids) by compressions and rarefactions. It is created by vibrating objects and requires a medium to travel, meaning it cannot propagate in a vacuum.

Properties of Sound Waves

1. Type of Wave:

- 1. Sound waves are **longitudinal waves**, meaning the particles in the medium move parallel to the direction of wave propagation.
- 2. In some cases, sound can exhibit transverse wave properties when traveling in solids.

2. Speed of Sound:

1. The speed of sound depends on the medium:

1.Air (at **20°C**): $\approx 343 \text{ m/s}$

2.Water: $\approx 1500 \text{ m/s}$

3.Steel: $\approx 5000 \text{ m/s}$

2. Sound travels fastest in **solids**, slower in **liquids**, and slowest in **gases** because of the difference in particle density and elasticity.

Frequency and Pitch:

- •Frequency (f) is measured in Hertz (Hz) and determines the pitch of the sound.
- •Human hearing range: 20 Hz 20,000 Hz.
- •Infrasound: Below 20 Hz (e.g., earthquakes, elephant communication).
- •Ultrasound: Above 20 kHz (e.g., medical imaging, sonar).

Amplitude and Loudness:

- •Amplitude is related to the **energy** of the sound wave and determines its **loudness**.
- •Measured in **decibels** (**dB**):
 - Whisper: $\approx 30 \text{ dB}$
 - Normal conversation: $\approx 60 \text{ dB}$
 - Jet engine: $\approx 120 \text{ dB}$ (pain threshold).

Wavelength and Frequency Relation:

- •The speed of sound (v) is related to its **frequency** (f) and **wavelength** (λ) by the equation: $v=f\lambda$
- •Higher frequency = shorter wavelength, and vice versa.

Reflection, Refraction, and Diffraction:

- •Reflection: Sound waves bounce off surfaces (e.g., echoes).
- •Refraction: Sound bends when it passes through different media.
- •Diffraction: Sound spreads out when passing through small openings.

1.Doppler Effect:

- 1. The change in frequency of a sound wave due to the motion of the source or observer.
- 2. Example: An ambulance siren sounds higher when approaching and lower when moving away.+

Applications of Sound in Physics

- Medical Imaging (Ultrasound): Uses high-frequency sound waves for diagnostic imaging.
- Sonar: Used in submarines to detect objects underwater.
- Noise Cancellation: Uses interference principles to reduce unwanted sound.
- **Musical Instruments:** Produce sound through vibrations of strings, air columns, or membranes.