ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage: First year students

Subject: General Chemistry 1 - Lecture 4

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Part per million (ppm) Concentration

It is a convenient way to express the concentration of the very dilute solution (by ppm or ppb).

$$(1 \text{ ppm} = 1 \text{ mg / liter}) \text{ or } (1 \text{ ppm} = 1 \text{ µg /mL})$$

ppm: is a mass ratio of grams of a solute component to one million grams of sample.

$$C_{ppm} = \frac{mass\ of\ component(g)}{mass\ of\ sample\ (g)} \times 10^6$$

or a mass ratio of grams of solute to one million grams of solution.

$$C_{ppm} = \frac{mass\ of\ solute(g)}{mass\ of\ solution\ (g)}\ x\ 10^6$$

also

$$Cppm = \frac{mass \ of \ solute(mg)}{volume \ of \ solution(liter)}$$

Cppm =
$$\frac{wt(mg)}{V(liter)} = \frac{\frac{wt(\mu g)}{1000}}{\frac{VmL}{1000}}$$

Cppm =
$$\frac{wt(\mu g)}{VmL}$$
 ($\mu g / mL$)

Then Cppm is measured by mg / liter or $\mu g / mL$

$$1 g = 1000 mg$$
 , $1 mg = 1000 \mu g$ $1 g = 10^6 \mu g$

$$Cppm = \frac{wt(g)}{VmL} \times 10^6$$

Example: What is the weight of KCl needed to Prepare 500 mL of (1000 ppm) aqueous solution ?.

solution:

$$Cppm = \frac{wt(g)}{VmL} \times 10^6$$

$$\text{wt}_{g} = \frac{C_{\text{ppm}} x V_{\text{mL}}}{10^6}$$

wt (g) =
$$\frac{1000 \times 500}{10^6}$$
 = 0.5 g

Then 0.5 g of KCl is to be dissolved in water and the volume is completed to 500 mL in a volumetric flask to get(1000 ppm) solution.

Relationship of ppm with Molarity (M) and Normality (N)

$$\mathsf{Molarity}(\mathsf{M}) = rac{PPm}{Mwt\,x1000}$$
 (M) (M الى المولاريه PPm الى التركيز من PPm $\mathsf{Mormality}(N) = rac{PPm}{Eq.wt\,x1000}$

$$(N)$$
 يستخدم هذا القانون لتحويل التركيز من PPm الى التركيز النورمالي

Example: Calculate the molarity of K^+ for the $K_3Fe(CN)_6$ (329 g / mol) aqueous solution of (63.3 ppm) concentration.

Solution:

$$K_3Fe(CN)_6$$
 \longrightarrow $3K^+ + Fe(CN)_6^{3-}$ $3mole$

Molarity(M) =
$$\frac{PPm}{Mwt \ x1000}$$
 = $\frac{63.3.9PPm}{329 \ x1000}$ = 1.92 x 10⁻⁴ M (molarity of k₃Fe(CN)₆)

Molarity of
$$K^+$$
 (M_{k+}) = 3 x 1.92 x $10^{-4}M = 5.77 \text{ x} 10^{-4} \text{ M}$

Exercise:

Calculate the molarity of (K^+) in 1740 ppm aqueous solution of K_2SO_4 (174 g / mole).

Example:

Solution:

$$Molarity(M) = \frac{PPm}{Mwt \, x1000}$$

$$Molarity(M) = \frac{PPm}{Mwt x 1000} = \frac{2.5 \times 10^2}{35.5 \times 1000} = 7.05 \times 10^{-3} M$$

Second method:

$$2.5 x 10^{2} \text{ppm} = \frac{2.5 x 10^{2} \text{mg}}{\text{liter}}$$

Molarity (M) =
$$\frac{\text{wt g}}{\text{M. wt } x \text{ V}_{\text{L}}}$$

Molarity(M) =
$$\frac{(2.5 \times 10^2 \times 10^{-3}) \text{ g}}{35.5 \times 1}$$

Molarity (M) =
$$7.05 \times 10^{-3} M$$

Example:

A 25 μL serum sample was analysed for glucose content and found to contain 26.7 μg . Calculate the concentration of glucose in ppm and in mg/dL.

Solution:

1 mL = 1000
$$\mu L$$

V (mL) =
$$\frac{V(\mu L)}{1000}$$
 = $\frac{25(\mu L)}{1000}$ = 25x10⁻³ mL

Cppm =
$$\frac{wt(\mu g)}{VmL}$$
 = $\frac{26.7}{25 \times 10^{-3}}$ = 1068 ppm

1 dL = 100 mL

$$V(dL) = \frac{V_{mL}}{100}$$

$$V(dL) = \frac{V(mL)}{100} = \frac{25x10^{-3} mL}{100} = 25x10^{-5} dL$$

$$mg = 1000 \mu g$$

wt (mg) =
$$\frac{weight (\mu g)}{1000}$$
 = $weight (\mu g) \times 10^{-3}$

wt (mg) =
$$26.7 \times 10^{-3}$$

Concentration (mg/dL) =
$$\frac{wt(mg)}{V(dL)}$$
 = $\frac{26.7 \times 10^{-3}}{25 \times 10^{-5}}$ = 106.8 mg/dL

** Then C (mg/dL) =
$$\frac{C_{ppm}}{10}$$

Then C (mg/dL) =
$$\frac{Molarity(M)xM.wt\ x1000}{10}$$

C(mg/dL) = Molarity(M) x M.wt x100

طريقه ثانيه:

$$mg/dL = \left(\frac{w}{v}\right) \% x1000$$

$$(\frac{w}{V})\% = \frac{weight\ of\ solute(g)}{volume\ of\ solution(mL)} \times 100\%$$

$$(\frac{w}{V})\% = \frac{26.7 \times 10^{-6}(g)}{25 \times 10^{-3} (mL)} \times 100\% = 0.1068$$

$$mg/dL = \left(\frac{w}{v}\right) \% \times 1000$$

 $0.1068 \times 1000 = 106.8 \, \text{mg/dl}$

Molality(m):

The number of moles of solute per kilogram of solvent.

$$Molality(m) = \frac{number\ of\ moles(solute)}{mass\ of\ solvent\ (Kg)}$$

$$Molality(m) = \frac{number\ of\ moles(solute)}{mass\ of\ solvent\ (\frac{g}{1000})} = \frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)}$$

Example:

Determine the molality of a solution prepared by dissolving 25 g of solid KNO $_3$ (101.1 g/mole) into 500 g of water.

Solution:

$$Molality(m) = \frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent\ (g)}$$

No of moles(solute) =
$$\frac{wt}{M.wt}$$
 = $\frac{25 g}{101.1 g/mol}$ = 0.247 moles

Molality(m) =
$$\frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)}$$
 = $\frac{0.247\ mol\ x\ 1000}{500\ g}$

$$Molality(m) = 0.494$$

Example:

The mass of an aqueous solution that contains 11.7 g of NaCl (58.5 g/mole) is 551.7 g . Calculate the molality of the solution.

Solution:

Mass of solution = mass of solute + mass of solvent

Mass of solution = mass of solute (NaCl) + mass of solvent (H_2O)

Mass of solvent (H_2O) = Mass of solution - mass of solute (NaCl)

Mass of solvent (H₂O) =
$$551.7 \text{ g} - 11.7 \text{ g} = 540 \text{ g}$$

No . of moles of NaCl =
$$\frac{mass(g)}{M.wt}$$

No . of moles of NaCl =
$$\frac{11.7}{58.5}$$
 = 0.2 mole

Molality (m) =
$$\frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)}$$

Molality (m) =
$$\frac{0.2 \, mol \, x \, 1000}{540 \, g} = 0.37$$

Exercise:

7.45 g of potassium chloride KCl (74.5 g/ mole) was dissolved in 100 g of water. Calculate the molality of the solution.

Example:

A 18 g of urea NH_2CONH_2 (60 g/ mole) was dissolved in 100 g of water (d= 1 g /mL). Calculate the molarity and molality of the solution.

Solution:

No . of moles of urea =
$$\frac{mass(g)}{M.wt}$$

No . of moles of urea =
$$\frac{18(g)}{60}$$
 = 0.3 mole

Volume of water =
$$\frac{mass\ of\ water(g)}{density\ (\frac{g}{mL})}$$

Volume of water =
$$\frac{100(g)}{1(\frac{g}{mL})}$$
 = 100 mL

Molarity (M) =
$$\frac{wt \times 1000}{Mwt \times V(mL)} = \frac{18 \times 1000}{60 \times 100(mL)} = 3 \text{ M}$$

Molality (m) =
$$\frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)}$$

Density of water = 1 g/mL

Mass of solvent $(H_2O) = 1 \text{ g/mL x volume of water } (mL)$

$$= 1 g/mLx100 mL = 100 g$$

Molality (m) =
$$\frac{0.3 \ mol \times 1000}{100 \ a} = 3$$

Example:

The weight of 10 g KCl (74.5 g / mol) is dissolved in 1000 g of water. If the density of the prepared solution is 0.997 g mL $^{-1}$, calculate :

- a) molarity
- b) molality of the solution.

Solution:

Molarity =
$$\frac{wt \ x1000}{Mwt \ x \ V(mL)}$$

Mass of solution = 10 g + 1000 g = 1010 g

Volume of solution =
$$\frac{mass\ of\ solution}{density} = \frac{1010\ g}{0.997} = 1013\ mL$$

Molarity =
$$\frac{10 \times 1000}{74.5 \times 1013(mL)} = 0.1325 \text{ M}$$

$$Molality(m) = \frac{number\ of\ moles(solute)x1000}{mass\ of\ solvent\ (g)}$$

No . of moles of KCl =
$$\frac{mass(g)}{M.wt}$$

No . of moles of KCl =
$$\frac{10}{74.5}$$
 = 0.1342

Molality(m) =
$$\frac{0.1342 \times 1000}{1000}$$
 = 0.1342

Mole fraction:

The number of moles of one component relative to the total number of moles of all components in the solution.

Mole fraction of solute(
$$X_1$$
) = $\frac{\text{No.of moles of solute } (n_1)}{\text{mole of solute } (n_1) + \text{moles of solvent } (n_2)}$

$$Mole \ fraction \ of \ solvent(X_2) = \frac{\text{No.of moles of solvent} \ (n_2)}{\text{moles of solute} \ (n_1) + \text{moles of solvent} \ (n_2)}$$

$$X_T = \sum X_i = 1$$

$$X_1 + X_2 = 1$$

Then
$$X_1 = 1 - X_2$$

and
$$X_2 = 1 - X_1$$

Example: calculate the mole fraction for each of solute and solvent in a solution if the solute is (2 mole) and the solvent in (3 mole).

Solution:

$$X_1 = \frac{n_1}{n_1 + n_2} = \frac{2}{2+3} = \frac{2}{5} = 0.4$$

$$X_2 = \frac{n_2}{n_1 + n_2} = \frac{3}{2+3} = \frac{3}{5} = 0.6$$

$$X_1 + X_2 = 0.4 + 0.6 = 1$$

For 3 components mixture we have X_1 , X_2 , and X_3 Then:

$$X_1 = \frac{n1}{n1+n2+n3}$$

$$X_2 = \frac{n2}{n1+n2+n3}$$

$$X_3 = \frac{n3}{n1+n2+n3}$$

<u>Example:</u> Calculate the mole fraction for each component in a mixture that contains 1 mole of A, 2 moles of B and 3 moles of C.

Total no of moles n_T = moles of A (n_A) + moles of B (n_B) + moles of C (n_C)

$$n_T = n_A + n_B + n_C$$

$$n_T = 1 + 2 + 3 = 6$$
 moles

$$X_A = \frac{n_A}{n_T} = \frac{1}{6} = 0.17$$

$$X_B = \frac{n_B}{n_T} = \frac{2}{6} = 0.33$$

$$X_C = \frac{n_C}{n_T} = \frac{3}{6} = 0.5$$

$$X_T = \sum X_i = 0.17 + 0.33 + 0.5 = 1$$

Example:

A 4.6 mL of methanol (32 g/mol , d=0.7952 g/mL) is dissolved in 25.2 g of water(18 g/mol). Calculate the mole fraction of methanol and water.

Solution:

Mass of methanol (g)= Volume x density Mass of methanol (g) = 4.6 mL x 0.7952 g mL⁻¹ = 3.658 g No . of moles of methanol = $\frac{mass(g)}{Mwt}$

No . of moles of methanol (n₁)=
$$\frac{3.658(\textit{g})}{32}$$
 =0.1143

No . of moles of water(n₂) =
$$\frac{25.2(g)}{18}$$
 =1.4

Total number of moles = $n_1 + n_2 = 0.1143 + 1.4 = 1.5143$ mole

Mole fraction of methanol $(X_1) = \frac{n_1}{n_1 + n_2}$

Mole fraction of methanol (X₁) = $\frac{0.1143}{1.5143}$ = 0.0755

Mole fraction of water(X_2) = $\frac{n_2}{n_1+n_2}$

Mole fraction of solvent (water) = $X_2 = \frac{1.4}{1.5143} = 0.9245$

Exercise:

The mass of an aqueous solution that contains 10.1~g of KNO_3 (101 g/mol) is 154.1~g . Calculate :

- 1. The molality of the solution.
- 2. The mole fraction of each of the solute(KNO $_3$) and solvent (H $_2$ O)(18 g/mol).

P- fuctions:

$$pX = -log[X]$$

Examples:

$$pH = -log[H_3O^+]$$
 $[H_3O^+] = 10^{-pH}$

$$pOH = -log[OH^{-}]$$
 $[OH^{-}] = 10^{-pOH}$