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8.5 RATIONAL FUNCTIONS

A rational function is a fraction with polynomials in the numerator and denominator.
For example,
@ 1 #+1

are all rational functions of x. There is a general technique called “partial fractions”
that, in principle, allows us to integrate any rational function. The algebraic steps in the
technigque are rather cumbersome if the polynomial in the denominator has degree more
than 2, and the technigue requires that we factor the denominator, something that is not
always possible. Howewver, in practice one does not often run across rational functions with
high degree polynomials in the denominator for which one has to find the antiderivative
function. 50 we shall explain how to find the antiderivative of a rational function only
when the denominator is a quadratic polynomial az® + bz + ¢.

We should mention a special type of rational function that we already know how to
integrate: If the denominator has the form {az + )", the substitution v = az + b will
always work. The denominator becomes ", and each  in the numerator is replaced by
(w—b)fa, and dr = dufa. While it may be tedious to complete the integration if the
numerator has high degree, it is merely a matter of algebra.
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3
EXAMPLE 8.5.1 Find [ (aT_za:)a dx. Using the substitution 1 = 3 — 2z we get

3
a=1
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]

We now proceed to the case in which the denominator is a quadratic polynomial. We
can always factor out the coefficient of 2 and put it outside the integral, so we can assume
that the denominator has the form z° + bz + c. There are three possible cases, depending
on how the quadratic factos: either 22 + b + o= (x —r){z — 8), 2° + b +c = (x — r)%,
or it doesn't factor. We can use the quadratic formula to decide which of these we have,
and to factor the quadratic if it is possible.

EXAMPLE 8.5.2 Determine whether 2° + 2 + 1 factors, and factor it if possible. The
quadratic formula tells us that ® + 2+ 1 = 0 when

=1+ 1=4
S S—

Since there is no square root of =3, this quadratic does not factor. O

EXAMPLE 8.5.3 Determine whether #° — » — 1 factors, and factor it if possible. The
quadratic formula tells us that #* — & — 1 = 0 when

1+yT+4 1445
2 2

xg_x_lz( _1+v’ﬁ) (x_l—v’ﬁ)
2 2 ’

Therefore
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If 2% + b + ¢ = {z — r)? then we have the special case we have already seen, that can
be handled with a substitution. The other two cases require different approaches.
If 2% 4 b + ¢ = (x —r){x — 8), we have an integral of the form

plx)

where p(2) is a polynomial. The first step is to make sure that p(z) has degree less than
2.

dx

'3

EXAMPLE 8.5.4 Rewrite f = i in terms of an integral with a nmumerator

- 2 )z +3)
that has degree less than 2. To do this we use long division of polynomials to discover that

23 O S ek RSO SN e |
(#=2)x+3) z2+x-06 T2z =0 (x = 2)(x+ 3)°

50

3 '

T T — 0

—_—r= | -l —_—
,[{x—z){:a+3)"" .[J’ "L+.[{:f:—2){:c+33'

The first integral is easy, so only the secomd requires some work. O

Now consider the following simple algebra of fractions:

A B Alx—s)+Blx—v) (A4 B)r— As— Br
:f.'—'r+:f.'—s_ (z—7){z—5) {z—r){z— s

That is, adding two fractions with constant numerator and denominators (z—r) and (z—s)
produces a fraction with denominator (& — »){x — &) and a polynomial of degree less than
2 for the numerator. We want to reverse this process: starting with a single fraction, we
want to write it as a sum of two simpler fractions. An example should make it clear how
to proceed.

x3 Ter—6
EXAMPLE 8.5.5 Evaluate | ———— d». We start by writing ———
5.5 Evalua f{x—?){x+3j o star I:f_'.wrlmgl[x_2:“[5?_'_3:|
as the sum of two fractions. We want to end up with
T —0 A B

— + .
(x—2){z+3) -2 =x+3
If we po ahead amd add the fractions on the right hand side we get

Tr—6  (A+ Blz+34-2B
(x=2)z+3)  {z—2)z+3)

So all we need to do is find A and B so that 72 — 6 = (A + B)r + 34 — 2B, which is to
say, we need 7= A+ Fand —6 = 34— 2H. This is a problem you've seen before: solve a
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system of two equations in two unknowns. There are many ways to proceed; here's one: If
T=A+Bthen B =T7T—Aandso -6=34-2B=34-2{(T—-A)=34—-14424 =54-14.
This is easy to solve for A: A= 8/5 and then B =7 - A =7-8/5 = 27/5. Thus
T — G [8 1 ar 1
—_——dr= | = + —_
(z—=2)=z+3) S5z—2 56 zx+3

The answer to the -u:rrigirml problem is now

f{f.-— {T+ddx f _ld“f{f.-— {T+d]d$

In e — 2| + 2—? In|x 4+ 3| 4+ C.

8 27
dr = Eln|3:—2|+?|n|:f:+3|+ﬂ'.

—

D'IIGC

? D
Now suppose that 22 + br 4+ ¢ doesn't factor. Again we can use long division to ensure

that the numerator has degree less than 2, then we complete the square.

r+1
2 4 dr + 8
factor. We could complete the square and use a trigonometric substitution, but it is simpler

EXAMPLE 8.5.6 Evaluate [ dx. The quadratic denominator does not

to rearrange the integrand:

f z+1 dT_fL?dT_f;dT
w2+ dz+8 ) a4dz 48 2 Hdr +8

The first integral is an easy substitution problem, using v = 2 + 42 4 8

z+2 1 fdu 1
f$2+4:r+8:¢ Efu 2 nlet o+ do o+ 8

For the second integral we complete the square:

2
g 3
m2+4m+5={m+232+4=4(('3”+ ) +L),

2

making the integral

e 2
Using © = ‘Hz_ we get

1 1 1 2 1 r+2
3 T;I;r = T =1 du = E arctan T .
' { 2 ]' +1 )

The final answer is now

z+1 1 a 1 x+4+2
fmdif‘:glnl:ﬁ +‘1:{.‘+8|—EEI.I'CE-EI.[I.( 5 )+C
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Exercises 8.5.

Find the antiderivatives,

1 7
1. dr = 2. ——dr =
f4_;ri fﬂl—.‘l:'2
f;mﬂ;» 4 fid::ra
2 4+ 10x+25 ) 4—x2
4
T 1
. —e . — ],
> f4+n:= = 6 fn:=+1nm+2ﬁx:'
3
x 1
[T N e
1 1
9, ——dr 10. —dr
_[2;['2—.'['—3 = _[.'l:'2+3:|:' =

8.6 NUMERICAL INTEGRATION

We have now seen some of the most generally useful methods for discovering antiderivatives,
aml there are others. Unfortunately, some functions have no simple antiderivatives; in such
cases if the value of a definite integral is needed 1t will have to be approximated. We will
see two methods that work ressonably well and yet are fairly simple; in some cases more
sophisticated techniques will be needed.

Of course, we already know one way to approximate an intepral: if we think of the
intepral as computing an area, we can add up the areas of some rectangles. While this
is quite simple, it is usually the case that a large number of rectangles is needed to get
acceptable accuracy. A similar approach is much better: we approximate the area under a
curve over a small interval as the area of a trapezoid. In figure 8.6.1 we see an area under
a curve approximated by rectangles and by trapezoids; it is apparent that the trapezoids
give a substantially better approximation on each subinterval.

Figure 8.6.1 Approximating an area with rectangles and with trapezoids. {AP)

As with rectangles, we divide the interval into n equal subintervals of length Az, A
flai) + flziga)
2

typical trapexzoid is pictured in figure 8.6.2; it has area HAa. IFwe add up
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the areas of all trapezoids we get

flao) + flzn) oo Sl + ) o0 fEac) + M)
2 2 2

(—'ﬂ;‘“] + flz )+ floa) + -+ floea—r) + %) A,

This is usually known as the Trapezoid Rule. For a modest number of subintervals this
is not too difficult to do with a caleulator; a computer can easily do many subintervals.

(i, flzi))

{mi-i-h .f{m".‘:'lj:l

I izl

Figure 8.6.2 A single trapezoid.

In practice, an approximation is useful only if we know how accurate it is; for example,
we might need a particular value accurate to three decimal places. When we compute a
particular approximation to an integral, the error is the difference between the approxi-
mation and the true value of the integral. For any approximation technigue, we need an
error estimate, a value that is guaranteed to be larger than the actual error. If A is an
approximation and F is the associated error estimate, then we know that the true value
of the integral is between A — F and A + F. In the case of our approximation of the
integral, we want F' = F(Az) to be a function of Az that gets small rapidly as Az gets
small. Fortunately, for many functions, there is such an error estimate associated with the
trapezoid approximation.

THEOREM 8.6.1 Suppose [ has a seccond derivative f everywhere on the interval
[, b), and | f“(x)] < M for all = in the interval. With Az = (b— a)/n, an error estimate
for the trapezoid approximation is

E(Az) =2

-a {b—a)
fAz)? = ——— M.
12 M(Az) 12n2 A

Let's see how we can use this.
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1 .
EXAMPLE 8.6.2 Approximate [ e~* dz to two decimal places. The second deriva-
Jo

2

wd — - —J:!
tiveof f=e™ is(42° —2)e™™, and it is not hard to see that on [0,1], (42" —2)e ™| < 2.
We begin by estimating the number of subintervals we are likely to need. To get two dec-
imal places of accuracy, we will certainly need E{Az) < 0.005 or

1 1
E(ZJ’H—E =< (L0005

1
E(E‘Eﬂ]] <n®

1
E.TTHHHT‘M{H

With # = 6, the error estimate is thus 1/6% < 0.0047. We compute the trapezoid approxi-
mation for six intervals:
(%I' b FQ/6)+ F(2/6) +- -+ F(5/6) + %) % ~ 0.74512.

So the true value of the integral is between 0.74512 — 0.00M7 = 0.7442 and 0.74512 +
0.0047 = 0.74982. Unfortunately, the first rounds to 0.74 and the second rounds to 0.75,
g0 we can't be sure of the correct value in the second decimal place; we need to pick a larger
n. Asit turns out, we need to go to n = 12 to get two bounds that both round to the same
value, which turns out to be 0.75. For comparison, wsing 12 rectangles to approximate
the area gives 0. 7727, which is considerably less aceurate than the approximation using six
trapezoids.

In practice it generally pays to start by requiring better than the maximum possible
error; for example, we might have initially required E{Az) < 0.001, or

1.1
1
E{ltﬂiﬂ)] < n?

[ =4
12,91 = 4/ "2“ <n

Had we immediately tried » = 13 this would have given us the desired answer. O

The trapezoid approximation works well, especially compared to rectangles, because
the tops of the trapezoids form a reasonably good approximation to the curve when Az is
fairly small. We can extend this idea: what if we try to approximate the curve more closely,
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by using something other than a straight line? The obwvious candidate is a parabola: if we
can approximate a short piece of the curve with a parabola with equation y = az® + bz +¢,
we can easily compute the area under the parabola.

There are an infinite number of parabolas theough any two given points, but only
one through three given points. If we find a parabola through three consecutive points
(xi, Flx:)), (g1, Flzig)), (mige, flzigz)) on the curve, it should be quite close to the
curve over the whole interval [z, 742], as in figure 8.6.3. If we divide the interval [a, B
into an even mumber of subintervals, we can then approximate the curve by a sequence of
parabolas, each covering two of the subintervals. For this to be practical, we would like a
simple formula for the area under one parabola, namely, the parabola through (z;, f(x;)),
(g1, flzie1)), and (.02, flzisz)). That is, weshould attempt to write down the parabola
y = az? + bz + ¢ through these points and then integrate it, and hope that the result is
fairly simple. Although the algebra involved is messy, this turns out to be possible. The
algebra is well within the capability of a good computer algebra system like Sage, s0 we
will present the result without all of the algebra; you can see how to do it in this Sape
worksheet.

To find the parabola, we solve these three equations for a, b, and e

fla) = alzip — Ar)? + bl — Az) + ¢
flzipr) =a(zin)® +blzi) + e
flziza) = alripy + Ax)? + bz + Az) + e

Not surprisingly, the solutions turn out to be quite messy. Nevertheless, Sage can easily
compute and simplify the integral to get

Tip1d b Aoy
f 0z + bo+ edz = =2 (F() + 4f(zin) + F(7is2).

i1 =dur

Now the sum of the areas under all parabolas is

ﬂ;f{f{u:ul +d flzy) + flze) 4+ flaa) + 4 (2g) 4+ flza) +- o+ flopo) +4f (21 ) 4+ flza)) =
T{ flao) + 4f(zy ) + 2f(wg) + 4 f(2g) + 2f(za) + - -+ 2f{z—2) +4f(201) + flz0))

This is just slightly more complicated than the formula for trapezoids; we need to remember
the alternating 2 and 4 coefficients; note that n must be even for this to make sense. This
approximation technique is referred to as Simpson’s Rule.

As with the trapezoid method, this is useful only with an error estimate:
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(wivz, flrzizz))

(x4, flx))

Figure 8.6.3 A parabola (dashed) approximating a curve (solid). (AP)

THEOREM 8.6.3 Suppose f has a fourth derivative f* everywhere on the interval
la,b], and |f“) ()| < M for all & in the interval. With Az = (b —a)/n, an error estimate
for Simpson’s approxdimation is

bh—u
180

E{Ax) = M{Az)!

1
EXAMPLE B.6.4 Let us again approximate [ &% dr to two decimal places. The
<l

fourth derivative of f = ¢~ is (162" — 482° + 12)e™"; on [0, 1] this is at most 12 in
absolute value. We begin by estimating the number of subintervals we are likely to need.
To get two decimal places of accuracy, we will certainly need E{Az) < 0.005, but taking
a cue from our earlier example, let’s require E{Az) < 0.001:

1 1
— (12— < (0.001
IE{J( :In‘

Tﬂ < nt

2EG = f.‘ j{‘:u < n

S0 owe try no= 4, since we need an even number of subintervals. Then the error estimate
is 12/180/4" < 0.0003 and the approximation is

(F0) -+ A£(1/4) + 2 (1/2) + 4£(3/4) + f{l]jﬁ ~ 0.746855.

S0 the true value of the integral is between 00746855 — 0.0003 = 0.746555 and 0.746855 +
0.0003 = 0.7471555, both of which round to 0.75. O
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Exercises 8.06.

In the following problems, compute the trapezoid and Simpson approximations using 4 subin-
tervals, and compute the error estimate for each. (Finding the maximum values of the second
and fourth derivatives can be challenging for some of these; vou may use a graphing calculator
or computer software to estimate the maximum values.) If you have access to Sage or similar
software, approximate each integral to two decimal places. You can use this Sage worksheet to
et started,

3 3
1. f:r;d':t::;- 2. f.‘l::zd'.‘l:::-
i 0
3 1
3. x dr = 4. —idr =
2 1 ¥
2 ] 1
5. [—,c&c% 8. [Iv'l+::c£u:=h
1 142t a
5 1
7. f r dr = 8. f Vot + Lde =
1 1+ 0
1
Q.f 4+ 1dr = 10. f 1+1/rdr =
1] 1

11. Using Simpson’s rule on a parabola fix), even with just two subintervals, gives the exact value
of the integral, becanse the parabolas used to approximate f will be f itself. Remarkably,
Simpson’s rule also computes the integral of a cubic function f(x) = ax® + ba® + e + d
exactly. Show this i true by showing that

[ pw) e = EEE ) + 410 + 2)/2) + fa))

Naote that the right hand side of this equation s exactly the Simpson approximation for the
cubic. This does require a bit of messy algebra, so you may prefer to use Sage.

8.7 ADDITIONAL EXERCISES

These problems require the techniques of this chapter, and are in no particular order. Some
problems may be done in more than one way.

1. f{t+-1]|‘1d't = 2. fm'*—mmm =

3. [{Er2 +l'I55:Jt1=Jru dt = 4, [sintws‘zt{it =

5. ft,-'mtseczhﬁ# 6. fMdZE:b

t*+t+3

T 8. [ =

B TR " B
o053 P

9. dt = 10. fh-m-c tdt =
TR

11. dt = 12. fms" bt =

t
e
fv"e’ +1
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1 1
13. — I 14. — =
ft2+3t - frh.flﬂ‘-*
sect t [3 2
15. [mdﬁ = 16. £ 1= + 1df =
17. ferﬁint{it# 18. f{t3f2+47]|3 bt =
19 .[Lrﬁ == 20 f 1 af =
PR B T TES)
arctan 2¢ t
21. T df = 23, fﬁ_i_m_ﬂdi::-
BT S S
23. fbll'l teas tdl = 24, fl“—{it+{!{& =
1 2
25, — it 206. tilnt)” df =
2 [t{lm)ﬂ = [ (Int)
t+1
a
27. [Ecdt:~ 28, [t=+t—1df



