Al mustaqbal University

College of Health and Medical Techniques Medical Laboratories Techniques Department

Stage: First year students

Subject: General Chemistry 1 - Lecture 7

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid(M) =
$$\frac{sp.gr \times \left(\frac{w}{w}\right)\% \times 1000}{Mwt}$$

Specific gravity (Sp.gr) =
$$\frac{density \ of \ substance}{density \ of \ water}$$

Specific gravity (Sp.gr) =
$$\frac{d_{substance}}{d_{H_2O}}$$

$$(sp.gr \approx d_{substance})$$
 as $d_{H_2O=1}$ (at room temperature)

Example:

Calculate the molarity of the solution of 70.5 % HNO $_3$ (w/w) (63 g /mole) that has specific gravity of (1.42) .

Solution:

$$Molarity(M) = \frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{Mwt}$$

$$\mathbf{M} = \frac{1.42 \ x \ \left(\frac{70.5}{100}\right) x \ 1000}{63.0} = \frac{1.42 \ x \ 70.5 x \ 10}{63.0} = \mathbf{15.9} \ \mathbf{M}$$

Exercise: Calculate the molarity of NaOH (40 g/mole) solution of $50 \left(\frac{w}{w}\right) \%$ knowing that its specific gravity(sp.gr) is 1.525.

Example:

Describe the preparation of (100 mL) of (6 M) HCl from its concentrated solution that is 37.1 % (w/w) HCl (36.5 g/mole) and has a specific gravity (sp.gr) of (1.181).

Solution:

$$\mathbf{M}_{\mathrm{HCl}} = \frac{sp.gr \, x \, \left(\frac{w}{w}\right)\% \, x \, \mathbf{1000}}{Mwt}$$

$$\mathbf{M}_{HCl} = \frac{1.181 \, x \, \frac{37.1}{100} \, x \, 1000}{36.5}$$

$$\mathbf{M}_{HCl} = \frac{1.181x \, 37.1 \, x \, 1000}{36.5 \, x \, 100}$$

$$\mathbf{M}_{HCl} = \frac{1.181 \times 37.1 \times 10}{36.5} = 12 \ \mathbf{M}$$

The Molarity of the concentrated acid is 12 M

الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (100 مللتر في هذا المثال) وكمايلي:

No. of moles of Conc. solution = No. of moles of dil. Solution also

No. of m moles of Conc. solution = No. of m moles of dil. Solution $M_{conc.}\,V_{conc.}=M_{dil.}\,\,V_{dil.}$

 $12 \times V_{conc} = 6 \times 100$

$$V_{conc} = \frac{6 \times 100}{12} = 50 \text{ mL}.$$

Then 50 mL of concentrated acid is to be diluted to 100 mL to give 6 M solution

Exercise: Describe the preparation of 500 mL of $3 \text{ M H}_2\text{SO}_4$ (98 g/mole) from the commercial reagent that is $93\% \text{ H}_2\text{SO}_4$ (w/w) and has a specific gravity of 1.830.

Example:

A Nurse is preparing for an intravenous administration of glucose $C_6H_{12}O_6$ (180 g/mole) How many mL of the solution of 5 % (w/w) glucose, its specific gravity is 1.020, will be needed to provide 1.25 g of glucose?

Solution:

Molarity (M) =
$$\frac{sp.gr \, x \, \left(\frac{w}{w}\right)\% \, x \, 1000}{Mwt}$$

Molarity (M) =
$$\frac{1.020 x \left(\frac{5}{100}\right) x 1000}{180} = 0.283$$
 M

Weight $(g) = molarity(M) \times V(L) \times M.wt$

Volume needed =
$$\frac{1.25}{0.283 \times 180}$$
 = 0.0245 L = 24.5 mL

Example:

A 6.42% (w/w) aqueous solution of NiCl₂ (129.61 g/mole) has a specific gravity of 1.149. Calculate:

- (a) Molarity of NiCl₂ in this solution.
- (b) the molar concentration of Cl⁻ in the solution.
- (c) mass in grams of NiCl₂ contained in 500 mL of this solution.

Answer:

(a) Molarity of NiCl₂ in this solution

$$\mathbf{M}_{\text{NiCl2}} = \frac{sp.gr \, x \, \% \, x \, 1000}{Mwt}$$

$$\mathbf{M}_{\text{NiCl2}} = \frac{1.149 \, x \, \frac{6.42}{100} \, x \, 1000}{129.61} = 0.569 \, \mathbf{M}$$

(b) molarity of Cl concentration in the solution.

$$NiCl_2 \longrightarrow Ni^{2+} + 2Cl^{-}$$

Each 1 mole gives 1 mole 2 mole

Molarity of $Cl^- = 2 \times Molarity of NiCl_2$

Molarity of
$$Cl^2 = 2 \times 0.569 = 1.138 M$$

(c) mass in grams of NiCl₂ contained in 500 mL of this solution.

Weight $(g) = Molarity \times volume(liter) \times M.wt$

Weight =
$$0.569 \times (\frac{500}{1000}) L \times 129.61 = 36.87 g$$

Exercise:

A solution of 12.5 (w/w)% of Fe(NO₃)₃ (241.86 g/mole) has a specific gravity of 1.059. Calculate:

- (a) the molar concentration of this solution.
- (b) the mass in grams of Fe(NO₃)₃ contained in each liter of this solution

Normality (N)

Represents the number of equivalents contained in one liter solution or the number of milli equivalents of solute contained in one milliliter of solution.

e.g: 0.2 N HCl solution contains 0.2 equivalents (eq) of HCl in liter solution or 0.2 milli equivalent (meq) of HCl in each mL of solution .

$$Normality (N) = \frac{number \ of \ equivalents(solute)}{VL(solution)}$$

Number of equivalents (eq) =
$$\frac{wt(g)}{eq.wt(g)}$$

Normality (N) =
$$\frac{\frac{wt}{eq.wt}}{V(liter)}$$

Normality (N) =
$$\frac{wt(g)}{eq.wt(g) x V(L)}$$

Normality (N) =
$$\frac{wt(g)}{eq.wt(g) x \frac{V(mL)}{1000}}$$

Normality (N) =
$$\frac{wt \times 1000}{eq.wt \times V(mL)}$$

Eq.wt =
$$\frac{Mwt}{\eta}$$

Normality (N) =
$$\frac{wt \ x \ 1000}{\frac{Mwt}{\eta} x \ V(mL)}$$

Normality (N) =
$$\frac{wt \ x \ 1000}{\frac{Mwt \ xV(mL)}{\eta}}$$

Normality (N) =
$$(\frac{wt \, x1000}{Mwt \, x \, V(mL)}) \eta$$

Normality (N) = Molarity (M) .
$$\eta$$
 , or Molarity(M) = Normality(N) / η

I. Equivalent mass in neutralization reaction:

A) Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.

$$Eq = \frac{Mwt}{number\ of\ H}$$

1.Monoprotic acid e.g: [HCl(36.5 g/mole) ,HNO3(63 g/mole) , CH3COOH(60 g/mole)] $~\eta{=}1$

$$Eq = \frac{Mwt}{1}$$

$$Eq = \frac{36.5}{1} = 36.5 \ for \ HCl$$

$$Eq = \frac{63}{1} = 63 \text{ for } HNO_3$$

2.Diprotic acid e.g: [$H_2SO_4(98 \text{ g/mole})$, $H_2CO_3(62 \text{ g/mole})$] η = 2

$$Eq = \frac{Mwt}{2} = \frac{98}{2} = 49$$
 for H_2SO_4
 $Eq = \frac{62}{2} = 31$ for H_2CO_3

B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.

$$Eq = \frac{\textit{Mwt}}{\textit{number of OH}}$$

1. Monohydroxy base e.g: $(\eta=1)$

e.g: NaOH (40 g/mole)

Eq.
$$=\frac{Mwt}{1}=\frac{40}{1}=40$$

e.g: KOH (56 g/mole)

Eq. =
$$\frac{Mwt}{1} = \frac{56}{1} = 56$$

2. Dihydroxy base $(\eta=2)$

e.g: Ca(OH)₂ (74 g / mole)

Eq. =
$$\frac{Mwt}{2} = \frac{74}{2} = 37$$

 $Zn(OH)_2$ (99.4 g/mole)

Eq.
$$=\frac{Mwt}{2} = \frac{99.4}{2} = 49.7$$

Ba(OH)₂ (171.35 g / mole)

Eq.
$$=\frac{Mwt}{2} = \frac{171.35}{2} = 85.67$$

1. Equivalent mass in (oxidation – reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation–reduction) reaction is that mass which directly produce or consume one mole of electron.

 η = numbers of electrons participate in oxidation - reduction processes (Redox)

Example:

$$2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \quad \to \ 5Fe_2 \ (SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4 + K_2SO_4 + 8H_2O_4 + K_2SO_4 + K_2SO_5 +$$

 $2MnO_4^- + 10Fe^{2+} + 8H^+ \rightleftharpoons 10Fe^{3+} + 2MnSO_4$ (acidic medium)

$$Mn^{7+}$$
 \rightarrow Mn^{2+} (5 e gain – reduction)

$$Fe^{2+}$$
 \rightarrow Fe^{3+} (1 e loss – oxidation)

Eq. of KMnO₄ =
$$\frac{Mwt}{5}$$
 = $\frac{157.9}{5}$ = 31.6 g

2. Equivalent mass for salts:

Eq=
$$\frac{Mwt}{\eta}$$

$(\eta) = \Sigma$ [no. of cations x its valency(cation charge)]

e.g: AgNO₃ (170 g/mole)

$$(AgNO_3 \rightarrow Ag+ + NO_3^-)$$

$$(\eta = Ag^{+}(1) \times 1 = 1)$$

Eq. =
$$\frac{Mwt}{1} = \frac{170}{1} = 170$$

e.g: Na₂CO₃ (106 g/mole)

$$(Na_{2}CO_{3} \, \rightarrow \, 2\; Na^{\scriptscriptstyle +} \, + CO_{3}{^{\scriptscriptstyle 2-}}\,)$$

$$(\eta = Na^{+}(2) \times 1 = 2)$$

$$Eq. = \frac{Mwt}{2} = \frac{106}{2} = 53$$

e.g: BaSO₄ (233 g/mole)

$$(Ba^{2+} + SO_4^{2-} \leftrightarrow BaSO_4)$$

$$\eta = Ba^{2+}(1) \times (2+) = 2$$

Eq.
$$=\frac{Mwt}{2}=\frac{233}{2}=116.5$$

e.g: La(IO₃)₃ (663.6 g/mole)

$$(La(IO_3)_3 \rightarrow La^{3+} + 3IO_3^{-})$$

$$(\eta = La^{3+}(1) \times 3 = 3)$$

Eq.
$$=\frac{Mwt}{3} = \frac{663.6}{3} = 221.1$$

e.g: KAI(SO₄)₂ (258 g/mole)

 $(\eta) = \Sigma$ [no. of cations x its valency(cation charge)]

no. of cations = $1 K^+ + 1 AI^{3+}$

$$\eta = K^{+}(1) \times (1+) + AI^{3+}(1) \times (3+) = 4$$

Eq.
$$=\frac{M.wt}{4} = \frac{258}{4} = 64.5$$

Example

Find the Normality of the solution containing 5.3 g/L of Na₂CO₃ (106 g/mol).

Solution:

To find η for Na₂CO₃ (η) = Σ [no. of cations x its valency(cation charge)]

No. of cations =2Na+ while the cation charge for Na⁺ =1,

Then
$$(\eta) = 2 \times 1 = 2$$

Eq. of Na₂CO₃ =
$$\frac{Mwt}{2} = \frac{106}{2} = 53$$
 grams

Normality (N) =
$$\frac{wt}{Eq. \ x \ VL}$$

Normality (N) =
$$\frac{5.3 g}{53 x 1L} = 0.1 N$$

Second method:

Normality (N) =
$$(\frac{wt \, x1000}{Mwt \, x \, V(mL)}) \, \eta$$

Normality (N) =
$$(\frac{5.3 \times 1000}{106 \times 1000(mL)})$$
 2 = 0.1 N

Example;

Convert the following Molarities to Normalities.

a. 2.5 M HCl b. 1.4 M H₂SO₄ c. 1.0 M NaOH d. 0.5 M Ca(OH)₂

Answer:

- a. Normality (N) of 2.5M HCl = $M \cdot \eta = 2.5 \times 1 = 2.5 \times$
 - b. Normality (N) of 1.4 M $H_2SO_4 = M$. $\eta = 1.4 \times 2 = 2.8 \text{ N } H_2SO_4$
- c. Normality (N) of 1M NaOH= $M \cdot \eta = 1 \times 1 = 1 \text{ N NaOH}$
- d. Normality (N) of 0.5 M Ca(OH)₂ = M . $\eta = 0.5 \times 2 = 1 \text{ N} \cdot \text{Ca(OH)}_2$

Calculations of the Normality of liquids

Normality of liquid(N) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{eq.wt}$$

Example:

Describe the preparation of 500 mL of $3 \text{ N H}_2SO_4(98 \text{ g/mole})$ from the commercial reagent that is $96\% \text{ H}_2SO_4$ (w/w) and has a specific gravity of 1.840.

Solution:

Normality (N H2SO4) = $\frac{sp.gr \times \% \times 1000}{eq.wt}$

eq.wt =
$$\frac{Mwt}{\eta}$$

For H_2SO_4 $\eta=2$ then

eq.wt =
$$\frac{98}{2}$$
 = 49

Normality (N _{H2SO4}) =
$$\frac{1.840 \times \frac{96}{100} \times 1000}{49}$$

Normality (N H2SO4) =
$$\frac{1.840 \times 96 \times 1000}{49 \times 100}$$

Normality (N
$$_{H2SO4}$$
) = $\frac{1.840 \times 96 \times 10}{49}$ = 36.04 N

The Normality of the concentrated acid is 36.04 N

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا المثال) نطبق قانون التخفيف التالى:

 $N_{conc.} V_{conc.} = N_{dil.} V_{dil.}$

$$36.04 \times V_{conc} = 3 \times 500$$

$$V_{conc} = \frac{3 \times 500}{36.04} = 41.62 \text{ mL}.$$

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give 3 N solution.

Example:

A solution was prepared by dissolving 327. 8 mg of Na₃PO₄ (163.9 g/mole) in sufficient amount of water to give 750 mL . Calculate:

- A) The Molarity and Normality of the solution
- B) the Molar concentration of Na⁺ in the solution.

solution:

A) The Molarity and Normality of the solution

$$Molarity(M) = \frac{wt_{(g)} x 1000}{M.wt x V_{mL}}$$

Weight of Na₃PO₄ (g) =
$$\frac{327.8 mg}{1000}$$
 = 0.3278 g

Molarity(M) =
$$\frac{0.3278 \times 1000}{163.9 \times 750}$$
 = 0.00267 M = 2.67 x 10⁻³ M

Normality (N) = Molarity(M) $x \eta$

 $(\eta) = \Sigma$ [no. of cations x its valency (cation charge)]

For Na₃PO₄
$$(\eta) = \Sigma [3 \text{ Na}^+ \text{ x } (+1)] = 3$$

Normality (N) =
$$2.67 \times 10^{-3} \times 3 = 8.01 \times 10^{-3} N$$

B) the Molar concentration of Na⁺ in the solution.

$$Na_3PO_4 \rightarrow 3Na^+ + PO_4^{3-}$$

1 mole 3 mole

Molarity of $Na^+ = 3 \times Molarity$ of Na_3PO_4

Molarity of
$$Na^+ = 3 \times 2.67 \times 10^{-3} = 8.01 \times 10^{-3} M$$