

Subject (Foundation Engineering) / Code (رمز المادة) Lecturer (Najah M. L. Al Maimuri) 1stterm – Lecture No. & Lecture Name (1st Lecture, Soil Investigation)

Rankine's Coefficient on Inclined Backfill

Granular Backfill with Vertical Back Face

If the backfill of a frictionless retaining wall is a granular soil (c=0) and rises at an angle α with respect to the horizontal (see Figure 7.10), the active earth-pressure coefficient may be expressed in the form

$$a = \cos \alpha \frac{\cos \alpha - \sqrt{\cos^2 \alpha - \cos^2 \phi}}{\cos \alpha + \sqrt{\cos^2 \alpha - \cos^2 \phi}}$$
 (1)

$$K_P = \cos \alpha \frac{\cos \alpha + \sqrt{\cos^2 \alpha - \cos^2 \phi}}{\cos \alpha - \sqrt{\cos^2 \alpha - \cos^2 \phi}}$$

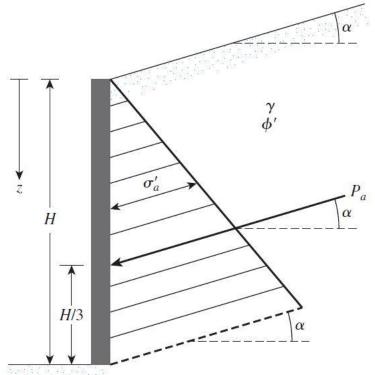


Fig.7-10

Lets $\alpha=0$, the Eq.1 will reduce to

$$k_a = \frac{1 - \sin \emptyset}{1 + \sin \emptyset} \tag{2}$$

Subject (Foundation Engineering) / Code (رمز المادة) Lecturer (Najah M. L. Al Maimuri)

1stterm – Lecture No. & Lecture Name (1st Lecture, Soil Investigation)

Ex: let $\alpha = 10$ and $\emptyset = 30$, from Eq.1

$$k_a = cos(10) \frac{cos10 - \sqrt{\cos^2 10 - \cos^2 30}}{cos10 + \sqrt{cos^2 10 - cos^2 30}} = 0.3495$$

Or use the following Table 17

α (deg) ↓	ϕ' (deg) $ o$												
	28	29	30	31	32	33	34	35	36	37	38	39	40
0	0.3610	0.3470	0.3333	0.3201	0.3073	0.2948	0.2827	0.2710	0.2596	0.2486	0.2379	0.2275	0.217
1	0.3612	0.3471	0.3335	0.3202	0.3074	0.2949	0.2828	0.2711	0.2597	0.2487	0.2380	0.2276	0.217
2	0.3618	0.3476	0.3339	0.3207	0.3078	0.2953	0.2832	0.2714	0.2600	0.2489	0.2382	0.2278	0.217
3	0.3627	0.3485	0.3347	0.3214	0.3084	0.2959	0.2837	0.2719	0.2605	0.2494	0.2386	0.2282	0.218
4	0.3639	0.3496	0.3358	0.3224	0.3094	0.2967	0.2845	0.2726	0.2611	0.2500	0.2392	0.2287	0.218
5	0.3656	0.3512	0.3372	0.3237	0.3105	0.2978	0.2855	0.2736	0.2620	0.2508	0.2399	0.2294	0.219
6	0.3676	0.3531	0.3389	0.3253	0.3120	0.2992	0.2868	0.2747	0.2631	0.2518	0.2409	0.2303	0.220
7	0.3701	0.3553	0.3410	0.3272	0.3138	0.3008	0.2883	0.2761	0.2644	0.2530	0.2420	0.2313	0.220
8	0.3730	0.3580	0.3435	0.3294	0.3159	0.3027	0.2900	0.2778	0.2659	0.2544	0.2432	0.2325	0.222
9	0.3764	0.3611	0.3463	0.3320	0.3182	0.3049	0.2921	0.2796	0.2676	0.2560	0.2447	0.2338	0.223
10	0.3802	0.3646	0.3495	0.3350	0.3210	0.3074	0.2944	0.2818	0.2696	0.2578	0.2464	0.2354	0.224
11	0.3846	0.3686	0.3532	0.3383	0.3241	0.3103	0.2970	0.2841	0.2718	0.2598	0.2482	0.2371	0.226
12	0.3896	0.3731	0.3573	0.3421	0.3275	0.3134	0.2999	0.2868	0.2742	0.2621	0.2503	0.2390	0.228
13	0.3952	0.3782	0.3620	0.3464	0.3314	0.3170	0.3031	0.2898	0.2770	0.2646	0.2527	0.2412	0.230
14	0.4015	0.3839	0.3671	0.3511	0.3357	0.3209	0.3068	0.2931	0.2800	0.2674	0.2552	0.2435	0.232
15	0.4086	0.3903	0.3729	0.3564	0.3405	0.3253	0.3108	0.2968	0.2834	0.2705	0.2581	0.2461	0.234
16	0.4165	0.3975	0.3794	0.3622	0.3458	0.3302	0.3152	0.3008	0.2871	0.2739	0.2612	0.2490	0.237
17	0.4255	0.4056	0.3867	0.3688	0.3518	0.3356	0.3201	0.3053	0.2911	0.2776	0.2646	0.2521	0.240
18	0.4357	0.4146	0.3948	0.3761	0.3584	0.3415	0.3255	0.3102	0.2956	0.2817	0.2683	0.2555	0.243
19	0.4473	0.4249	0.4039	0.3842	0.3657	0.3481	0.3315	0.3156	0.3006	0.2862	0.2724	0.2593	0.246
20	0.4605	0.4365	0.4142	0.3934	0.3739	0.3555	0.3381	0.3216	0.3060	0.2911	0.2769	0.2634	0.250
21	0.4758	0.4498	0.4259	0.4037	0.3830	0.3637	0.3455	0.3283	0.3120	0.2965	0.2818	0.2678	0.254
22	0.4936	0.4651	0.4392	0.4154	0.3934	0.3729	0.3537	0.3356	0.3186	0.3025	0.2872	0.2727	0.259
23	0.5147	0.4829	0.4545	0.4287	0.4050	0.3832	0.3628	0.3438	0.3259	0.3091	0.2932	0.2781	0.263
24	0.5404	0.5041	0.4724	0.4440	0.4183	0.3948	0.3731	0.3529	0.3341	0.3164	0.2997	0.2840	0.269
25	0.5727	0.5299	0.4936	0.4619	0.4336	0.4081	0.3847	0.3631	0.3431	0.3245	0.3070	0.2905	0.275

Vertical Back face with $C - \emptyset$ Soil Backfill

For a retaining wall with a vertical back and inclined backfill of $C - \emptyset$ soil

$$K_a' = \frac{1}{\cos^2 \phi'} \begin{cases} 2\cos^2 \alpha + 2\left(\frac{c'}{\gamma z}\right)\cos \phi' \sin \phi' \\ -\sqrt{\left[4\cos^2 \alpha(\cos^2 \alpha - \cos^2 \phi') + 4\left(\frac{c'}{\gamma z}\right)^2 \cos^2 \phi' + 8\left(\frac{c'}{\gamma z}\right)\cos^2 \alpha \sin \phi' \cos \phi'\right]} \end{cases} - 1$$

ail (najah.mahdi@uomus.edu.iq)

Subject (Foundation Engineering) / Code (رمز المادة) Lecturer (Najah M. L. Al Maimuri) 1stterm – Lecture No. & Lecture Name (1st Lecture, Soil Investigation)

Some values of ka are given in Table 7.2. For a problem of this type, the depth of tensile crack is given as

$$z_c = \frac{2c'}{\gamma} \sqrt{\frac{1 + \sin \phi'}{1 - \sin \phi'}}$$

Table 7.2 Values of K'_a									
		$\frac{c'}{\gamma z}$							
ϕ' (deg)	α (deg)	0.025	0.05	0.1	0.5				
15	0	0.550	0.512	0.435	-0.179				
	5	0.566	0.525	0.445	-0.184				
	10	0.621	0.571	0.477	-0.186				
	15	0.776	0.683	0.546	-0.196				
20	O	0.455	0.420	0.350	-0.210				
	5	0.465	0.429	0.357	-0.212				
	10	0.497	0.456	0.377	-0.218				
	15	0.567	0.514	0.417	-0.229				
25	0	0.374	0.342	0.278	-0.231				
	5	0.381	0.348	0.283	-0.233				
	10	0.402	0.366	0.296	-0.239				
	15	0.443	0.401	0.321	-0.250				
30	O	0.305	0.276	0.218	-0.244				
	5	0.309	0.280	0.221	-0.246				
	10	0.323	0.292	0.230	-0.252				
	15	0.350	0.315	0.246	-0.263				

Example 7.5

For the retaining wall shown in Figure 7.10, H = 7.5 m, $\gamma = 18$ kN/m³, $\phi' = 20^{\circ}$, c' = 13.5 kN/m², and $\alpha = 10^{\circ}$. Calculate the Rankine active force, P_a , per unit length of the wall and the location of the resultant force after the occurrence of the tensile crack.

Solution

From Eq. (7.24).

$$z_r = \frac{2c'}{\gamma} \sqrt{\frac{1 + \sin\phi'}{1 - \sin\phi'}} = \frac{(2)(13.5)}{18} \sqrt{\frac{1 + \sin 20}{1 - \sin 20}} = 2.14 \text{ m}$$

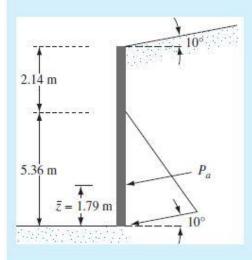
Subject (Foundation Engineering) / Code (رمز المادة) Lecturer (Najah M. L. Al Maimuri)

1stterm - Lecture No. & Lecture Name (1st Lecture, Soil Investigation)

At z = 7.5 m,

$$\frac{c'}{\gamma z} = \frac{13.5}{(18)(7.5)} = 0.1$$

From Table 7.2, for $\phi' = 20^{\circ}$, $c'/\gamma z = 0.1$, and $\alpha = 10^{\circ}$, the value of K'_a is 0.377, so at z = 7.5 m,


$$\sigma_a' = \gamma z K_a' \cos \alpha = (18)(7.5)(0.377)(\cos 10) = 50.1 \text{ kN/m}^2$$

After the occurrence of the tensile crack, the pressure distribution on the wall will be as shown in Figure 7.11, so

$$P_a = \left(\frac{1}{2}\right)(50.1)(7.5 - 2.14) = 134.3 \text{ kN/m}$$

and

$$\overline{z} = \frac{7.5 - 2.14}{3} = 1.79 \text{ m}$$

Figure 7.11 Calculation of Rankine active force, $c' - \phi'$ soil