

Al-Mustaqbal University

College of Engineering and Technology

Department of Medical Instrumentation Techniques Engineering

Class: Third Class

Subject: Instruction sets & addressing modes.

Lecturer: M.Sc Ali Kareem

Lecture Address: Instruction sets & addressing modes.

2024 - 2025

Weeks 19

Microprocessor interfacing.

BY M.SC. ALI KAREEM AL-JUHAISHI

INSTRUCTION SET OF 8086

Binary to Decimal Number Format 8086 also follows the binary number system similar to 8085. However, it supports both 8-bit and 16-bit operations due to its 16-bit architecture.

BINARYTO DECIMAL NUMBER FORMAT

8	4	2	1	DECIMAL
0	0	0	0	= 0
0	0	0	1	= 1
0	0	1	0	= 2
0	0	1	1	= 3
0	1	0	0	= 4
0	1	0	1	= 5
0	1	1	0	= 6
0	1	1	1	= 7

8	4	2	1	DECIMAL
1	0	0	0	= 8
1	0	0	1	= 9
1	0	1	0	= 10 = A
1	0	1	1	= 11 = B
1	1	0	0	= 12 = C
1	1	0	1	= 13 = D
1	1	1	0	= 14 = E
1	1	1	1	= 15 = F

Examples:

Binary: 0000 0001 → Decimal: 1
Binary: 0000 1010 → Decimal: 10
Binary: 0011 1100 → Decimal: 60
Binary: 1001 0110 → Decimal: 150
Binary: 1111 1111 → Decimal: 255

What is an Instruction? An instruction is a binary-encoded operation designed to perform a specific task inside a microprocessor. The 8086 processor has a rich set of instructions categorized based on their functionality.

- 8086 has 117 instructions.
- Each instruction is represented by an 16-bit binary value.

Classification of Instruction Set 8086 instructions are categorized into the following types:

- 1. Data Transfer Instructions
- 2. Arithmetic Instructions
- 3. Logical Instructions
- 4. Branching Instructions
- 5. Control Transfer Instructions
- 6. String Manipulation Instructions
- 7. Processor Control Instructions

1. Data Transfer Instructions

These instructions move data between registers, memory, and I/O ports without altering the data.

- MOV Destination, Source: Transfers data between registers and memory.
 - Example: MOV AX, BX
- **PUSH Source**: Pushes the register/memory content onto the stack.
 - Example: PUSH AX
- **POP Destination**: Pops the top value of the stack into the destination register.
 - ∘ Example: POP BX

- XCHG Destination, Source: Swaps data between registers or memory.
 - Example: XCHG AX, BX

2. Arithmetic Instructions

Perform mathematical operations like addition, subtraction, multiplication, and division.

- **ADD Destination, Source**: Adds source to the destination.
 - Example: ADD AX, BX
- SUB Destination, Source: Subtracts source from the destination.
 - Example: SUB AX, CX
- **MUL Source**: Multiplies AX register with source operand (for unsigned multiplication).
 - o Example: MUL CX
- **DIV Source**: Divides accumulator by source operand.
 - Example: DIV BX

3. Logical Instructions

These instructions perform bitwise operations like AND, OR, XOR, and NOT.

- **AND Destination, Source**: Performs bitwise AND.
 - \circ Example: AND AX, OFOFH
- **OR Destination, Source**: Performs bitwise OR.
 - Example: OR AL, BL
- **XOR Destination, Source**: Performs bitwise XOR.
 - Example: XOR CX, DX

• **NOT Destination**: Performs bitwise NOT.

∘ Example: NOT AX

4. Branching Instructions

Used to change the flow of execution.

• **JMP Address**: Jumps to the specified address unconditionally.

。 Example: JMP 2000H

• JE/JZ Address: Jumps if equal/zero flag is set.

。 Example: JE LOOP

• JNE/JNZ Address: Jumps if not equal/zero flag is clear.

∘ Example: JNE NEXT

• CALL Address: Calls a procedure (subroutine).

• Example: CALL FUNCTION

• **RET**: Returns from a subroutine.

Example: RET

5. Control Transfer Instructions

These instructions control the execution of the processor.

• **HLT** (**Halt Instruction**): Stops the execution of the processor. The processor enters a halt state and remains there until it is reset or interrupted.

∘ Example: HLT

• **NOP** (**No Operation**): Performs no operation but takes up a clock cycle. It is used for timing adjustments or to create delays in the execution of a program.

o Example: NOP

6. String Manipulation Instructions

These instructions handle operations on strings stored in memory.

• MOVS: Moves string data.

Example: MOVSB (moves byte)

• **CMPS**: Compares string bytes/words.

o Example: CMPSB

• SCAS: Scans a string for a match.

。 Example: SCASB

7. Processor Control Instructions

Used for system-level control operations.

• **STI**: Set interrupt flag (enable interrupts).

• **CLI**: Clear interrupt flag (disable interrupts).

• STC: Set carry flag.

• **CLC**: Clear carry flag.