

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

pH for the acidic solution

In order to find the numeric value of the level of acidity or basicity of a substance, the pH scale (where in pH stands for 'potential of hydrogen') can be used.

The pH scale is the most common and trusted way to measure how acidic or basic a substance. A pH scale measure can vary from 0 to 14, where 0 is the most acidic and 14 is the most basic a substance can be.

Another way to check if a substance is acidic or basic is to use litmus paper. There are two types of litmus paper available that can be used to identify acids and bases – red litmus paper and blue litmus paper. Blue litmus paper turns red under acidic conditions and red litmus paper turns blue under basic or alkaline conditions.

A A STATE OF THE S

Al-Mustaqbal University
Department of Techniques of Fuel and Energy Engineering
First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

pH and pOH

pH scale is a commonly used scale to measure the acidity or the basicity of a substance.

The possible values on the pH scale range from 0 to 14.

Acidic substances have pH values ranging from 1 to 7 (1 being the most acidic point on the pH scale) and alkaline or basic substances have pH values ranging from 7 to 14.

A perfectly neutral substance would have a pH of exactly 7.

pH which is an abbreviation of 'potential for hydrogen' or 'power of hydrogen' of a substance can be expressed as the negative logarithm (with base 10) of the hydrogen ion concentration in that substance. Similarly,

the pOH of a substance is the negative logarithm of the hydroxide ion concentration in the substance.

ALACATION OF THE PROPERTY OF T

Al-Mustaqbal University Department of Techniques of Fuel and Energy Engineering First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

These quantities can be expressed via the following formulae:

$$\mathbf{pH} = -\log\left[H^+\right]$$

$$\mathbf{pH} = -\log\left[\mathbf{OH}^{-}\right]$$

Both pH and pOH are related to each other. pH is inversely proportional to pOH; pH increases with decreasing pOH. Relation between p $[H^+]$

$$PH \propto \frac{1}{POH}$$

and p [[OH] :

$$pH + pOH = 14$$

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm – Lect 7

pH – A Measure of Acidity

$$pH = -log [H^+]$$

Solution Is	<u>At 25°C</u>			
neutral	$[H^+] = [OH^-]$	$[H^+] = 1.0 \times 10^{-7}$	pH = 7	
acidic	$[H^{+}] > [OH^{-}]$	$[H^+] > 1.0 \times 10^{-7}$	pH < 7	
basic	[H ⁺] < [OH ⁻]	$[H^+]$ < 1.0 x 10 ⁻⁷	pH > 7	

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

Other important relationships

pOH = -log[OH-]

 $[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$

 $-\log [H^+] - \log [OH^-] = 14.00$

pH + pOH = 14.00

pH Meter

The pHs of Some Common Fluids

Sample	pH Value			
Gastric juice in the stomach	1.0-2.0			
Lemon juice	2.4			
Vinegar	3.0			
Grapefruit juice	3.2			
Orange juice	3.5			
Urine	4.8-7.5			
Water exposed to air*	5.5			
Saliva	6.4-6.9			
Milk	6.5			
Pure water	7.0			
Blood	7.35-7.45			
Tears	7.4			
Milk of magnesia	10.6			
Household ammonia	11.5			

A A STATE OF THE S

Al-Mustaqbal University Department of Techniques of Fuel and Energy Engineering First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm – Lect 7

Example:

The concentration of H⁺ ions in a solution is $3.2 \times 10^{-4} M$. The solution was left for a while, it was found that the hydrogen ion concentration equal to $1.0 \times 10^{-3} M$. Calculate the pH of the solution on these two occasions.

pH = -log [H⁺] [H⁺] =
$$3.2 \times 10^{-4} M$$

pH = -log [H⁺]
= -log (3.2×10^{-4}) = 3.49

On the second occasion, $[H^+] = 1.0 \times 10^{-3} M$,

so that

 $pH = -log (1.0 \times 10^{-3}) = 3.00$

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm – Lect 7

Example :

In a NaOH solution [OH $^-$] is 2.9 x 10 $^{-4}$ *M*. Calculate the pH of the solution.

Alternatively, we can use $K_w = [H^+][OH^-]$ to calculate $[H^+]$, and then we can calculate the pH from the $[H^+]$. *Try it*.

$$[H^+] = \frac{K_w}{[OH^-]} \longrightarrow pH = -log [H^+]$$

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm – Lect 7

Strength of acids and bases

Strong Electrolyte – 100% dissociation

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Weak Electrolyte – not completely dissociated

$$CH_3COOH \longrightarrow CH_3COO^-(aq) + H^+(aq)$$

Strong Acids are strong electrolytes

$$HCI(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

$$HNO_3(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$$

$$HCIO_4(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + CIO_4^-(aq)$$

$$H_2SO_4(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$$

AA WOOD

Al-Mustaqbal University Department of Techniques of Fuel and Energy Engineering First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm – Lect 7

Weak Acids are weak electrolytes

HF (aq) + H₂O (I)
$$H_3O^+$$
 (aq) + F⁻ (aq)
HNO₂ (aq) + H₂O (I) H_3O^+ (aq) + NO₂⁻ (aq)
HSO₄⁻ (aq) + H₂O (I) H_3O^+ (aq) + SO₄²⁻ (aq)
H₂O (I) + H₂O (I) H_3O^+ (aq) + OH⁻ (aq)

Strong Bases are strong electrolytes

NaOH (s)
$$H_2O$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) H_2O K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) H_2O Ba²⁺ (aq) + 2OH⁻ (aq)

First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

Strong Acid (HCI)

Weak Acid (HF)

A. A. Constitution of the constitution of the

Al-Mustaqbal University Department of Techniques of Fuel and Energy Engineering First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm – Lect 7

Weak Bases are weak electrolytes

$$F^{-}(aq) + H_2O(I) \longrightarrow OH^{-}(aq) + HF(aq)$$

 $NO_2^{-}(aq) + H_2O(I) \longrightarrow OH^{-}(aq) + HNO_2(aq)$

Conjugate acid-base pairs:

- The conjugate base of a strong acid has no measurable strength.
- H₃O⁺ is the strongest acid that can exist in aqueous solution.
- The OH⁻ ion is the strongest base that can exist in aqueous solution.

ALACATION OF THE PARTY OF THE P

Al-Mustaqbal University Department of Techniques of Fuel and Energy Engineering First stage Subject: Analytical chemistry UOMU027011

Subject: Analytical chemistry UOMU02 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

Relative strength of acids and bases

	Acid	Base	
Strongest	HClO ₄	ClO ₄ -	Weakest
	H ₂ SO ₄	HSO ₄ ⁻	bases
	HI	I-	
	HBr	Br-	
	HCl	Cl-	
	HNO ₃	NO ₃ -	
	H ₃ O ⁺	H ₂ O	
	HSO ₄ -	SO ₄ ²⁻	
	H ₂ SO ₃	HSO ₃ -	
	H ₃ PO ₄	$H_2PO_4^-$	
	HNO ₂	NO ₂ -	
	HF	F-	
	HC ₂ H ₃ O ₂	$C_2H_3O_2^-$	
	Al(H ₂ O) ₆ ³⁺	Al(H ₂ O) ₅ OH ²⁺	
	H_2CO_3	HCO ₃ -	
	H ₂ S	HS-	
	HCIO	CIO-	
	HBrO	BrO-	
	NH ₄ ⁺	NH ₃	
	HCN	CN-	
	HCO ₃ -	CO ₃ ²⁻	
	H_2O_2	HO ₂ -	
	HS-	S ²⁻	
Weakest acids	$_{2}$ O	ОН-	Strongest bases

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1sterm - Lect 7

Example :

Calculate the pH of a:

(a) $1.0 \times 10^{-3} M \text{ HCI}$ solution (b) $0.020 M \text{ Ba(OH)}_2$ solution

(a)
$$HCI(aq) \longrightarrow H^{+}(aq) + CI^{-}(aq)$$

1.0 x 10⁻³ M 1.0 x 10⁻³ M

$$[H^+] = 1.0 \times 10^{-3} M$$

pH = -log (1.0 \times 10⁻³)
= **3.00**

And the state of t

Al-Mustaqbal University Department of Techniques of Fuel and Energy Engineering First stage

Subject: Analytical chemistry UOMU027011 Lecturer: Zahraa Salah Hadi 1stterm – Lect 7

(b) Ba(OH)₂ is a strong base

Ba(OH)₂(aq)
$$\rightarrow$$
 Ba²⁺(aq) + 2OH⁻(aq)
0.020 M 2 X 0.020 M
= 0.040 M

$$[OH^{-}] = 0.040 M$$

pOH = -log 0.040 = 1.40