

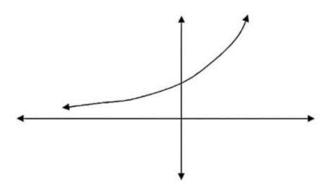
Chapter two Functions

2-1- Exponential and Logarithm functions : <u>Exponential functions</u>: If a is a positive number and x is any number, we define the exponential function as : $y = a^x$ with domain : $-\infty < x < \infty$ Range : y > 0

The properties of the exponential functions are :

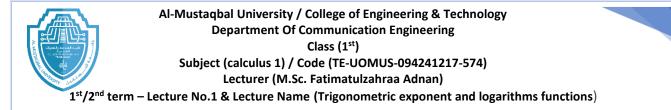
1. If $a > 0 \leftrightarrow a^{x} > 0$. 2. $a^{x} \cdot a^{y} = a^{x+y}$. 3. $a^{x}/a^{y} = a^{x\cdot y}$. 4. $(a^{x})^{y} = a^{x\cdot y}$. 5. $(a \cdot b)^{x} = a^{x} \cdot b^{x}$. 6. $a^{\frac{x}{y}} = \sqrt[y]{a^{x}} = (\sqrt[y]{a})^{x}$. 7. $a^{\cdot x} = 1/a^{x}$ and $a^{x} = 1/a^{\cdot x}$. 8. $a^{x} = a^{y} \leftrightarrow x = y$. 9. $a^{0} = 1$, $a^{\infty} = 0$, $a^{-\infty} = 0$, where a > 1. $a^{\infty} = 0$, $a^{-\infty} = \infty$, where a < 1.

The graph of the exponential function $y = a^x$ is :



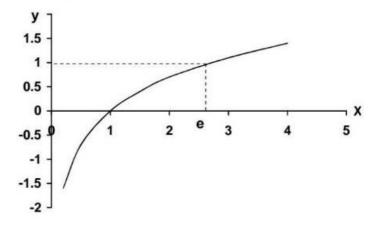
<u>Logarithm function</u>: If a is any positive number other than I, then the logarithm of x to the base a denoted by :

 $y = log_a x \quad where \quad x > 0$ At a = e = 2.7182828..., we get the natural logarithm and denoted by : y = ln xLet x, y > 0 then the properties of logarithm functions are : 1. $y = a^x \leftrightarrow x = log_a y \quad and \quad y = e^x \leftrightarrow x = ln y$. 2. $log_e x = ln x$. 3. $log_a x = ln x / ln a$.



4. ln(x,y) = ln x + ln y. 5. ln(x/y) = ln x - ln y. 6. $ln x^{n} = n . ln x$. 7. $ln e = log_{a}a = 1 and ln 1 = log_{a}1 = 0$. 8. $a^{x} = e^{x . ln a}$. 9. $e^{ln x} = x$.

The graph of the function y = ln x is :



Application of exponential and logarithm functions :We take Newton's law of cooling : $T - T_S = (T_0 - T_S) e^{tk}$ where T is the temperature of the object at time t. T_S is the surrounding temperature . T_0 is the initial temperature of the object .k is a constant .

<u>EX-1</u>- The temperature of an ingot of metal is 80 ^{o}C and the room temperature is 20 ^{o}C . After twenty minutes, it was 70 ^{o}C .

- a) What is the temperature will the metal be after 30 minutes?
- b) What is the temperature will the metal be after two hours?
- c) When will the metal be $30 \ ^{\circ}C$?

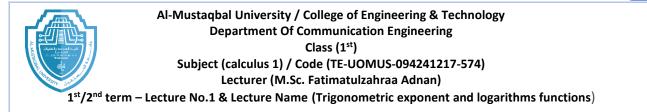
<u>Sol.</u> :

$$T - T_s = (T_0 - T_s)e^{tk} \Rightarrow 50 = 60e^{20k} \Rightarrow k = \frac{\ln 5 - \ln 6}{20} = -0.0091$$

a)
$$T - 20 = 60e^{30(-0.0091)} = 60 * 0.761 = 45.6 \ ^{\circ}C \Rightarrow T = 65.6 \ ^{\circ}C$$

b)
$$T - T_s = 60e^{120(-0.0091)} = 60 * 0.335 = 20.1 \ ^{\circ}C \Rightarrow T = 40.1 \ ^{\circ}C$$

c)
$$10 = 60e^{-0.0091t} \Rightarrow -0.0091t = -\ln 6 \Rightarrow t = 3.3 \text{ hrs}.$$



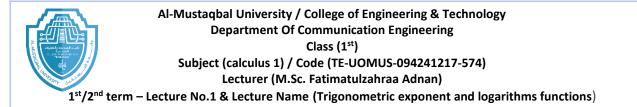
2-2- <u>Trigonometric functions</u>: When an angle of measure θ is placed in standard position at the center of a circle of radius r, the trigonometric functions of θ are defined by the equations:

$$Sin\theta = \frac{y}{r} = \frac{1}{\csc\theta} , Cos\theta = \frac{x}{r} = \frac{1}{\sec\theta} , tan\theta = \frac{y}{x} = \frac{1}{\cot\theta} = \frac{Sin\theta}{\cos\theta}$$

The following are some properties of these functions :

1)
$$Sin^{2}\theta + Cos^{2}\theta = 1$$

2) $1 + tan^{2}\theta = sec^{2}\theta$ and $1 + Cot^{2}\theta = csc^{2}\theta$
3) $Sin(\theta \mp \beta) = Sin\theta.Cos\beta \mp Cos\theta.Sin\beta$
4) $Cos(\theta \mp \beta) = Cos\theta.Cos\beta \pm Sin\theta.Sin\beta$
5) $tan(\theta \mp \beta) = \frac{tan\theta \mp tan\beta}{1 \pm tan\theta.tan\beta}$
6) $Sin2\theta = 2Sin\theta.Cos\theta$ and $Cos2\theta = Cos^{2}\theta - Sin^{2}\theta$
7) $Cos^{2}\theta = \frac{1 + Cos2\theta}{2}$ and $Sin^{2}\theta = \frac{1 - Cos2\theta}{2}$
8) $Sin(\theta \mp \frac{\pi}{2}) = \mp Cos\theta$ and $Cos(\theta \mp \frac{\pi}{2}) = \pm Sin\theta$
9) $Sin(-\theta) = -Sin\theta$ and $Cos(-\theta) = Cos\theta$ and $tan(-\theta) = -tan\theta$
10) $Sin\theta.Sin\beta = \frac{1}{2}[Cos(\theta - \beta) - Cos(\theta + \beta)]$
 $Cos\theta.Cos\beta = \frac{1}{2}[Sin(\theta - \beta) + Sin(\theta + \beta)]$

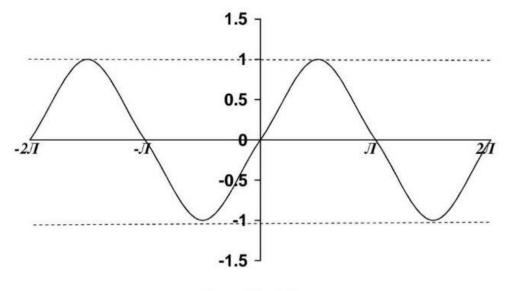


11)
$$\sin\theta + \sin\beta = 2\sin\frac{\theta+\beta}{2}.\cos\frac{\theta-\beta}{2}$$

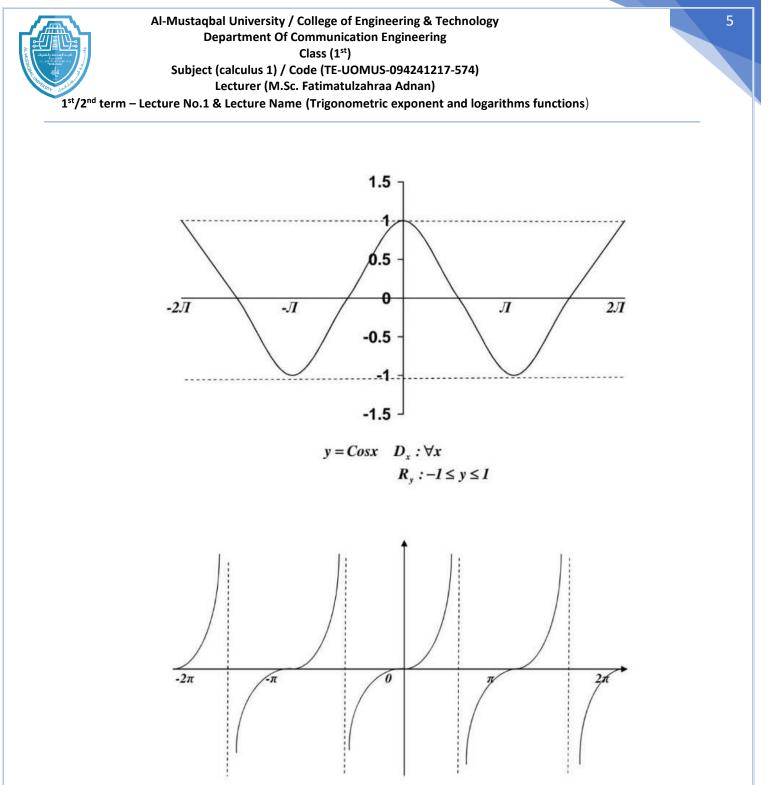
 $\sin\theta - \sin\beta = 2\cos\frac{\theta+\beta}{2}.\sin\frac{\theta-\beta}{2}$
12) $\cos\theta + \cos\beta = 2\cos\frac{\theta+\beta}{2}.\cos\frac{\theta-\beta}{2}$
 $\cos\theta - \cos\beta = -2\sin\frac{\theta+\beta}{2}.\sin\frac{\theta-\beta}{2}$

θ	0	П/6	$\Pi/4$	П/3	$\Pi/2$	П
Sint	0	1/2	1/\2	√3/2	1	0
Cost	1	√3/2	1/\2	1/2	0	-1
tant	0	1/\2	1	$\sqrt{3}$	8	0

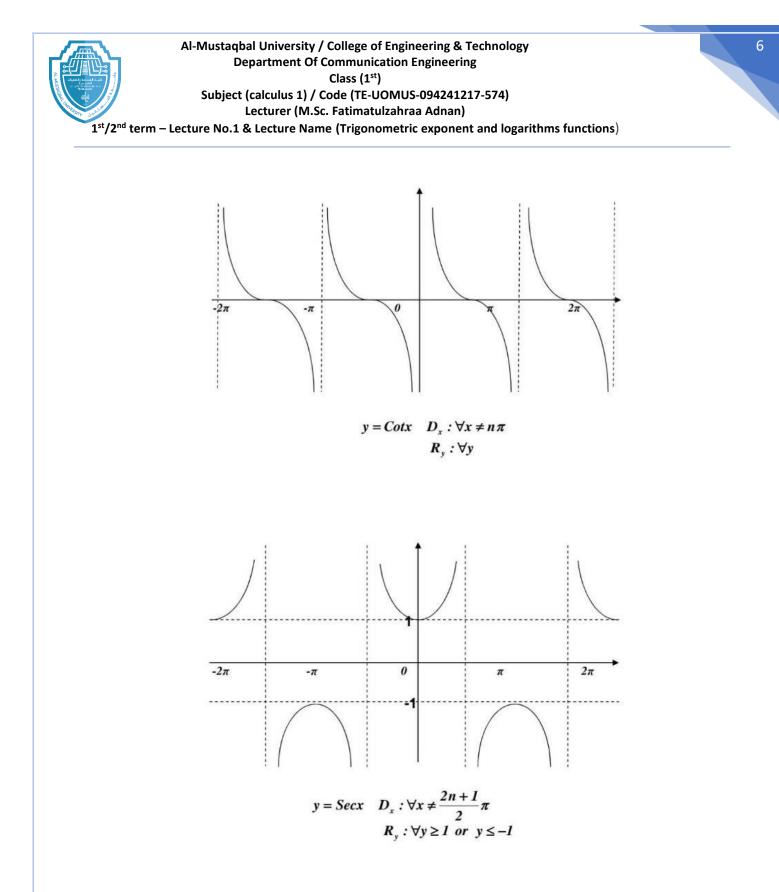
Graphs of the trigonometric functions are :



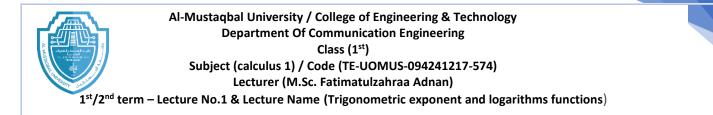
 $y = Sinx \quad D_x : \forall x$ $R_y : -1 \le y \le 1$

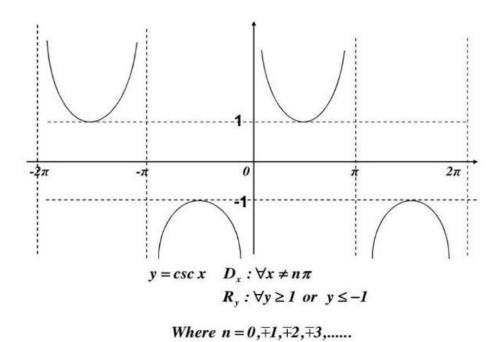


$$y = \tan x \quad D_x : \forall x \neq \frac{2n+1}{2}\pi$$
$$R_y : \forall y$$



٦





<u>*EX-2*</u> - Solve the following equations , for values of θ from θ^o to 360^o inclusive.

a) $\tan \theta = 2 \sin \theta$ b) $1 + \cos \theta = 2 \sin^2 \theta$ Sol.-

a)
$$\tan \theta = 2 \sin \theta \Rightarrow \frac{\sin \theta}{\cos \theta} = 2 \sin \theta$$

 $\Rightarrow \sin \theta (1 - 2\cos \theta) = 0$
either $\sin \theta = 0 \Rightarrow \theta = 0^\circ, 180^\circ, 360^\circ$
or $\cos \theta = \frac{1}{2} \Rightarrow \theta = 60^\circ, 300^\circ$

or

Therefore the required values of θ are $\theta^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 360^{\circ}$.

b)
$$1 + \cos\theta = 2.\sin^2\theta \Rightarrow 1 + \cos\theta = 2(1 - \cos^2\theta)$$

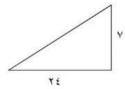
 $\Rightarrow (2\cos\theta - 1)(\cos\theta + 1) = 0$
either $\cos\theta = \frac{1}{2} \Rightarrow \theta = 60^\circ, 300^\circ$

$$\cos\theta = -1 \Rightarrow \theta = 180^{\circ}$$

There the roots of the equation between 0° and 360° are $60^{\circ}, 180^{\circ}$ and 300° .

<u>EX-3</u>- If $tan \theta = 7/24$, find without using tables the values of $Sec\theta$ and $Sin\theta$. <u>Sol</u>.-

$\tan \theta = \frac{y}{r} = \frac{7}{24}$	$r = \sqrt{2}$	$7^2 + 24$	$\frac{1}{2} = 2$	25
$Sec\theta = \frac{r}{x} = \frac{25}{24}$	and	Sin θ =	$=\frac{y}{r}=$	$=\frac{7}{25}$



<u>EX-4-</u> Prove the following identities :

a)
$$Csc\theta + tan \theta.Sec\theta = Csc\theta.Sec^2\theta$$

b) $Cos^4\theta - Sin^4\theta = Cos^2\theta - Sin^2\theta$
c) $\frac{Sec\theta - Csc\theta}{tan\theta - Cot\theta} = \frac{tan\theta + Cot\theta}{Sec\theta + Csc\theta}$

Sol.-

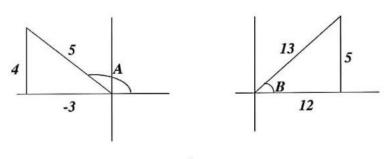
a)
$$L.H.S. = Csc\theta + tan\theta.Sec\theta = \frac{1}{Sin\theta} + \frac{Sin\theta}{Cos\theta} \cdot \frac{1}{Cos\theta}$$

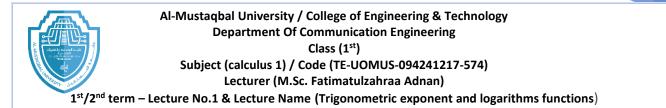
$$= \frac{Cos^{2}\theta + Sin^{2}\theta}{Sin\theta.Cos^{2}\theta} = \frac{1}{Sin\theta} \cdot \frac{1}{Cos^{2}\theta} = Csc\theta.Sec^{2}\theta = R.H.S.$$
b) $L.H.S. = Cos^{4}\theta - Sin^{4}\theta = (Cos^{2}\theta - Sin^{2}\theta).(Cos^{2}\theta + Sin^{2}\theta)$
 $= Cos^{2}\theta - Sin^{2}\theta = R.H.S.$
c) $L.H.S. = \frac{Sec\theta - Csc\theta}{tan\theta - Cot\theta} = \frac{\frac{1}{Cos\theta} - \frac{1}{Sin\theta}}{\frac{Sin\theta}{Cos\theta} - \frac{Cos\theta}{Sin\theta}} = \frac{1}{Sin\theta + Cos\theta}$
 $= \frac{Sin^{2}\theta + Cos^{2}\theta}{Sin\theta + Cos\theta} \cdot \frac{\frac{1}{Sin\theta.Cos\theta}}{\frac{1}{Sin\theta.Cos\theta}} = \frac{tan\theta + Cot\theta}{Sec\theta + Csc\theta} = R.H.S.$

EX-5- Simplify
$$\frac{1}{\sqrt{x^2 - a^2}}$$
 when $x = a.Csc\theta$.
Sol.- $\frac{1}{\sqrt{x^2 - a^2}} = \frac{1}{\sqrt{a^2 Csc^2 \theta - a^2}} = \frac{1}{a\sqrt{Cot^2 \theta}} = \frac{1}{a} \tan \theta$.

<u>EX-6</u>- Eliminate θ from the equations : i) $x = a \sin \theta$ and $y = b \tan \theta$ ii) $x = 2 \sec \theta$ and $y = \cos 2\theta$ <u>Sol</u>.-

Sol. -





a)
$$Sin(A-B) = SinA.CosB - CosA.SinB$$

 $= \frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \frac{5}{13} = \frac{63}{65}$
b) $tan(A-B) = \frac{tan A - tan B}{1 + tan A.tan B}$
 $= \frac{\frac{4}{3} - \frac{5}{12}}{1 - \frac{4}{3} \cdot \frac{5}{12}} = -\frac{63}{16}$
c) $tan(A+B) = \frac{tan A + tan B}{1 - tan A.tan B}$
 $= \frac{-\frac{4}{3} + \frac{5}{12}}{1 - \frac{4}{3} \cdot \frac{5}{12}} = \frac{33}{56}$

<u>EX-10</u> – Prove the following identities:

a)
$$Sin(A+B) + Sin(A-B) = 2.SinA.CosB$$

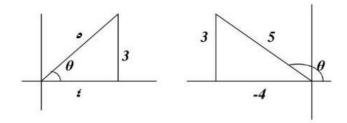
b) $tan A + tan B = \frac{Sin(A+B)}{CosA.CosB}$
SecA.SecB.CscA.CscB

c)
$$Sec(A+B) = \frac{1}{CscA.CscB - SecA.SecB}$$

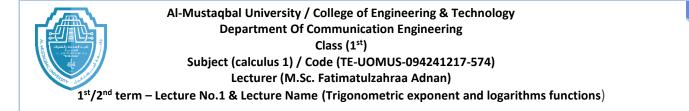
d) $\frac{Sin2\theta + Cos2\theta + 1}{Sin2\theta - Cos2\theta + 1} = Cot\theta$

$$\begin{array}{l} \underline{Sol.}\\ a) \quad L.H.S. &= Sin(A+B) + Sin(A-B) \\ &= SinA.CosB + CosA.SinB + SinA.CosB - CosA.SinB \\ &= 2.SinA.CosB = R.H.S. \\ &= 2.SinA.CosB = R.H.S. \\ b) \quad R.H.S. &= \frac{Sin(A+B)}{CosA.CosB} = \frac{SinA.CosB + CosA.SinB}{CosA.CosB} \\ &= tan A + tan B = L.H.S. \\ c) \quad R.H.S &= \frac{SecA.SecB.CscA.CscB}{CscA.CscB - SecA.SecB} = \frac{\frac{1}{CosA} \cdot \frac{1}{CosB} \cdot \frac{1}{SinA} \cdot \frac{1}{SinB}}{\frac{1}{SinA} \cdot \frac{1}{SinB}} \\ &= \frac{1}{\frac{1}{CosA} \cdot CosB} - SinA.SinB} = \frac{\frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} \\ &= \frac{1}{\frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} + \frac{1}{Cos} \cdot \frac{1}{Cos} \cdot \frac{1}{Cos} + \frac{1}{C$$

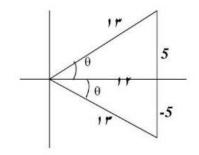
<u>EX-11</u> – Find, without using tables, the values of $Sin \ 2\theta$ and $Cos \ 2\theta$, when: a) $Sin\theta = 3/5$, b) $Cos \ \theta = 12/13$, c) $Sin \ \theta = -\sqrt{3}/2$. <u>Sol.</u> –



$$Sin 2\theta = 2.Sin \theta.Cos \theta = 2.\frac{3}{5}.(\mp \frac{4}{5}) = \mp \frac{24}{25}$$
$$Cos 2\theta = Cos^2 \theta - Sin^2 \theta = (\mp \frac{4}{5})^2 - (\frac{3}{5})^2 = \frac{7}{25}$$



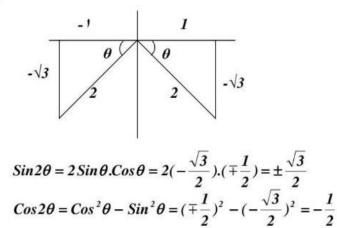
12



 $Sin 2\theta = 2.Sin \theta.Cos \theta = 2(\mp \frac{5}{13}).(\frac{12}{13}) = \mp \frac{120}{169}$ $Cos 2\theta = Cos^2 \theta - Sin^2 \theta = (\frac{12}{13})^2 - (\mp \frac{5}{13})^2 = \frac{119}{169}$

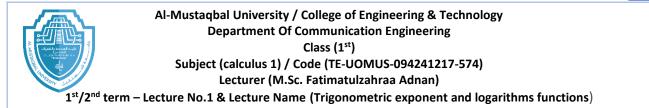
c)

b)



<u>EX-12-</u> Solve the following equations for values of θ from θ^{o} to 360^{o} inclusive: a) $Cos 2\theta + Cos \theta + 1 = \theta$, b) $4 \tan \theta \cdot \tan 2\theta = 1$

Sol.-

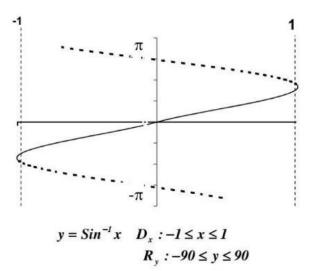


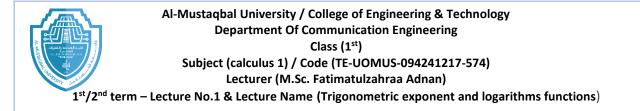
a)
$$\cos 2\theta + \cos \theta + 1 = 0 \Rightarrow 2\cos^2 \theta - 1 + \cos \theta + 1 = 0$$

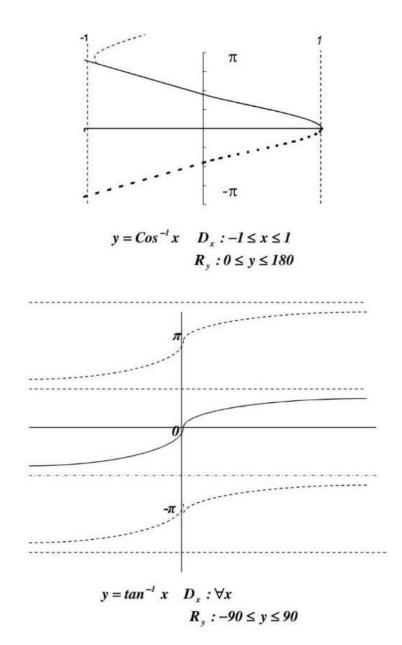
 $\Rightarrow \cos(2.\cos \theta + 1) = 0$
either $\cos \theta = 0 \Rightarrow \theta = 90^\circ, 270^\circ$
or $\cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^\circ, 240^\circ$
 $\theta = \{90^\circ, 120^\circ, 240^\circ, 270^\circ\}$
b) $4.\tan \theta.\tan 2\theta = 1 \Rightarrow 4.\tan \theta. \frac{2\tan \theta}{1 - \tan^2 \theta} = 1$
 $\Rightarrow 9\tan^2 \theta = 1$
either $\tan \theta = \frac{1}{3} \Rightarrow \theta = 18.4^\circ, 198.4^\circ$
or $\tan \theta = -\frac{1}{3} \Rightarrow \theta = 161.6^\circ, 341.6^\circ$
 $\theta = \{18.4^\circ, 161.6^\circ, 198.4^\circ, 341.6^\circ\}$

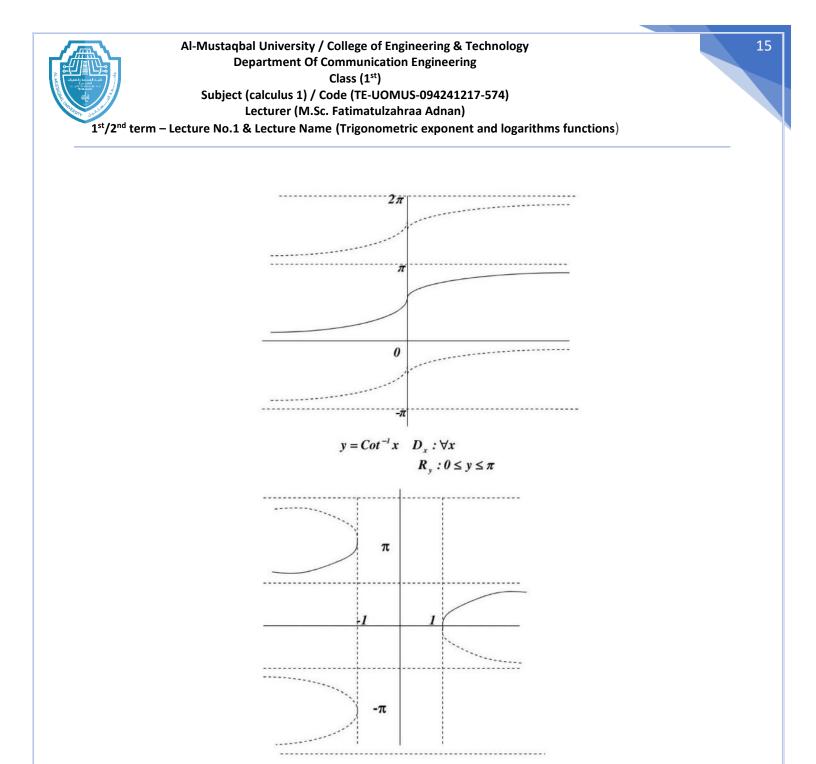
2-3- <u>The inverse trigonometric functions</u> : The inverse trigonometric functions arise in problems that require finding angles from side measurements in triangles :

$$y = Sinx \iff x = Sin^{-1}y$$

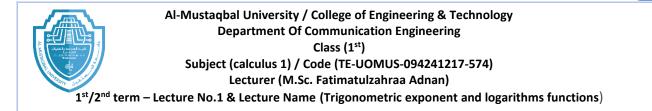


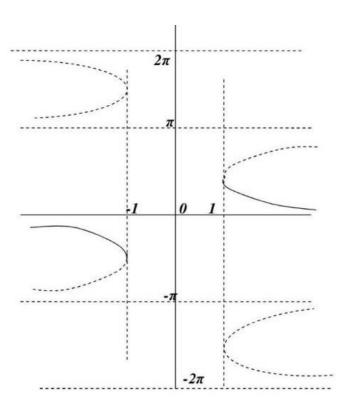






 $y = Sec^{-1}x \quad D_x : \forall |x| \ge 1$ $R_y : 0 \le y \le \pi, y \ne \frac{\pi}{2}$



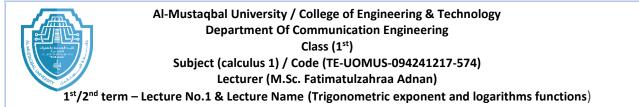


$$y = Csc^{-l}x \quad D_x : \forall |x| \ge 1$$
$$R_y : -\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$$

The following are some properties of the inverse trigonometric functions :

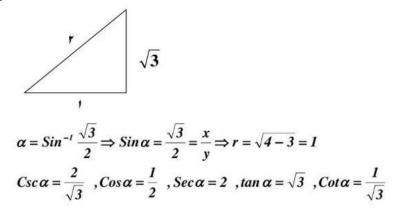
1. $Sin^{-1}(-x) = -Sin^{-1}x$ 2. $Cos^{-1}(-x) = \pi - Cos^{-1}x$ 3. $Sin^{-1}x + Cos^{-1}x = \frac{\pi}{2}$ 4. $tan^{-1}(-x) = -tan^{-1}x$ 5. $Cot^{-1}x = \frac{\pi}{2} - tan^{-1}x$ 6. $Sec^{-1}x = Cos^{-1}\frac{1}{x}$ 7. $Csc^{-1}x = Sin^{-1}\frac{1}{x}$ 8. $Sec^{-1}(-x) = \pi - Sec^{-1}x$

and noted that $(Sinx)^{-1} = \frac{1}{Sinx} = Cscx \neq Sin^{-1}x$



EX-13- Given that
$$\alpha = Sin^{-1} \frac{\sqrt{3}}{2}$$
, find :
 $Csc\alpha$, $Cos\alpha$, $Sec\alpha$, $tan\alpha$, and $Cot\alpha$

Sol.-



<u>EX-14</u> – Evaluate the following expressions : *a)* Sec(Cos⁻¹ $\frac{1}{2}$) *b*) Sin⁻¹1 – Sin⁻¹(-1) *c*) Cos⁻¹(-Sin $\frac{\pi}{6}$)

Sol.-

a)
$$Sec(Cos^{-1}\frac{1}{2}) = Sec\frac{\pi}{3} = 2$$

b) $Sin^{-1}1 - Sin^{-1}(-1) = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi$
c) $Cos^{-1}(-Sin\frac{\pi}{6}) = Cos^{-1}(-\frac{1}{2}) = \frac{2}{3}\pi$

EX-15- Prove that :

a)
$$Sec^{-1}x = Cos^{-1}\frac{1}{x}$$
 b) $Sin^{-1}(-x) = -Sin^{-1}x$

Sol.

a) Let
$$y = Sec^{-1}x \Rightarrow x = Secy \Rightarrow x = \frac{1}{Cosy}$$

 $\Rightarrow y = Cos^{-1}\frac{1}{x} \Rightarrow Sec^{-1}x = Cos^{-1}\frac{1}{x}$
b) Let $y = -Sin^{-1}x \Rightarrow x = Sin(-y) \Rightarrow x = -Siny$
 $\Rightarrow y = Sin^{-1}(-x) \Rightarrow Sin^{-1}(-x) = -Sin^{-1}x$