

Al-Mustaqbal University / College of Engineering & Technology Building and Construction Techniques Engineering Department First Class

Subject: -ENGINEERING PHYSICS / Code: - UOMU023014 Lecturer Fatima Muslim

1st term – Lecture No.4 & Lecture Name Linear Motion Examples

Example1: A body begins to move from rest with a constant acceleration of 8 m/s² in a straight line. Find:

يبدأ جسم في الحركة من السكون بتسارع ثابت مقداره
$$8$$
 م/ث في خط مستقيم. أوجد:

- a. The final velocity after five seconds
- **b.** The average velocity during the five-second period
- **c.** The displacement in five seconds

Solution:

a.
$$v = u + at$$

= 0 + 8 × 5
 $v = 40 \text{ m/s}$

$$v = 40 m/s$$

$$v_{avg} = \frac{u+v}{2}$$

$$v_{avg} = \frac{0+40}{2}$$

$$v_{avg} = 20 m/s$$

$$c. s = \frac{(u+v)}{2} \times t$$
$$= 20 \times 5$$
$$s = 100 m$$

$$\frac{\mathbf{or}}{s} = ut + \frac{1}{2}at^2$$
$$= 0 + \frac{1}{2} \times 8 \times 5^2$$
$$s = 100 m$$

Al-Mustaqbal University / College of Engineering & Technology Building and Construction Techniques Engineering Department First Class

Subject: -ENGINEERING PHYSICS / Code: - UOMU023014 Lecturer Fatima Muslim

1st term - Lecture No.4 & Lecture Name Linear Motion Examples

Example2: The velocity of a truck increases regularly from 15 km/h to 60 km/h within 20 s. Calculate:

- a. Average velocity
- b. Acceleration
- c. Displacement. Use units of meters and seconds

Solution:

a.
$$u = \left(15 \frac{km}{h}\right) \times \left(1000 \frac{m}{km}\right) \times \left(\frac{1}{3600} \frac{h}{s}\right) = 4.17 \text{ m/s}$$

$$v = \left(60 \frac{km}{h}\right) \times \left(1000 \frac{m}{km}\right) \times \left(\frac{1}{3600} \frac{h}{s}\right) = 16.7 \text{ m/s}$$

$$v_{avg} = \frac{u+v}{2} = \frac{4.17 + 16.7}{2} = 10.4 \text{ m/s}$$

b.
$$v = u + at$$

 $16.7 = 4.17 + (a \times 20)$
 $16.7 - 4.17 = 20a$
 $12.53 = 20a$
 $a = \frac{12.53}{20} = 0.63 \text{ m/s}^2$

c.
$$s = \frac{(u+v)}{2} \times t$$

= $\frac{4.17 + 16.7}{2} \times 20$
 $s = 208.7 m$

$$s = ut + \frac{1}{2}at^{2}$$

$$= (4.17 \times 20) + (\frac{1}{2} \times 0.63 \times 20^{2})$$

$$= 83.4 + 126 = 209.4 m$$

Al-Mustaqbal University / College of Engineering & Technology Building and Construction Techniques Engineering Department First Class

Subject: -ENGINEERING PHYSICS / Code: - UOMU023014 Lecturer Fatima Muslim

1st term – Lecture No.4 & Lecture Name Linear Motion Examples

H.W: A ball falls from rest at a height of 50 m above the ground.

- **a.** What is its velocity before it hits the ground directly?
- **b.** How long time it takes to reach the ground?