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SECTION B APPLICATIONS OF FRICTION IN MACHINES

In Section B we investigate the action of friction in various machine
applications. Because the conditions in these applications are normally
either limiting static or kinetic friction, we will use the variable �

(rather than �s or �k) in general. Depending on whether motion is im-
pending or actually occurring, � can be interpreted as either the static
or kinetic coefficient of friction.

6/4 Wedges
A wedge is one of the simplest and most useful machines. A wedge is

used to produce small adjustments in the position of a body or to apply
large forces. Wedges largely depend on friction to function. When sliding
of a wedge is impending, the resultant force on each sliding surface of
the wedge will be inclined from the normal to the surface by an amount
equal to the friction angle. The component of the resultant along the
surface is the friction force, which is always in the direction to oppose
the motion of the wedge relative to the mating surfaces.

Figure 6/3a shows a wedge used to position or lift a large mass m,
where the vertical loading is mg. The coefficient of friction for each pair
of surfaces is � � tan �. The force P required to start the wedge is found
from the equilibrium triangles of the forces on the load and on the
wedge. The free-body diagrams are shown in Fig. 6/3b, where the reac-
tions are inclined at an angle � from their respective normals and are in
the direction to oppose the motion. We neglect the mass of the wedge.
From the free-body diagrams we write the force equilibrium conditions
by equating to zero the sum of the force vectors acting on each body.
The solutions of these equations are shown in part c of the figure, where
R2 is found first in the upper diagram using the known value of mg. The
force P is then found from the lower triangle once the value of R2 has
been established.

If P is removed and the wedge remains in place, equilibrium of the
wedge requires that the equal reactions R1 and R2 be collinear as
shown in Fig. 6/4, where the wedge angle � is taken to be less than �.
Part a of the figure represents impending slippage at the upper surface,
and part c of the figure represents impending slippage at the lower sur-
face. In order for the wedge to slide out of its space, slippage must occur
at both surfaces simultaneously; otherwise, the wedge is self-locking,
and there is a finite range of possible intermediate angular positions of
R1 and R2 for which the wedge will remain in place. Figure 6/4b illus-
trates this range and shows that simultaneous slippage is not possible
if � � 2�. You are encouraged to construct additional diagrams for
the case where � � � and verify that the wedge is self-locking as long
as � � 2�.

If the wedge is self-locking and is to be withdrawn, a pull P on the
wedge will be required. To oppose the new impending motion, the reac-
tions R1 and R2 must act on the opposite sides of their normals from
those when the wedge was inserted. The solution can be obtained as
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358 Chapter 6 Friction

with the case of raising the load. The free-body diagrams and vector
polygons for this condition are shown in Fig. 6/5.

Wedge problems lend themselves to graphical solutions as indicated
in the three figures. The accuracy of a graphical solution is easily held
within tolerances consistent with the uncertainty of friction coefficients.
Algebraic solutions may also be obtained from the trigonometry of the
equilibrium polygons.
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6/5 Screws
Screws are used for fastening and for transmitting power or motion.

In each case the friction developed in the threads largely determines the
action of the screw. For transmitting power or motion the square thread
is more efficient than the V-thread, and the analysis here is confined to
the square thread.
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Force Analysis
Consider the square-threaded jack, Fig. 6/6, under the action of the

axial load W and a moment M applied about the axis of the screw. The
screw has a lead L (advancement per revolution) and a mean radius r.
The force R exerted by the thread of the jack frame on a small represen-
tative portion of the screw thread is shown on the free-body diagram of
the screw. Similar reactions exist on all segments of the screw thread
where contact occurs with the thread of the base.

If M is just sufficient to turn the screw, the thread of the screw 
will slide around and up on the fixed thread of the frame. The angle �
made by R with the normal to the thread is the angle of friction, so that
tan � � �. The moment of R about the vertical axis of the screw is 
Rr sin (� � �), and the total moment due to all reactions on the threads
is ΣRr sin (� � �). Since r sin (� � �) appears in each term, we may fac-
tor it out. The moment equilibrium equation for the screw becomes 

Equilibrium of forces in the axial direction further requires that

Combining the expressions for M and W gives

(6/3)

To determine the helix angle �, unwrap the thread of the screw for one
complete turn and note that � � tan�1 (L/2�r).

We may use the unwrapped thread of the screw as an alternative
model to simulate the action of the entire screw, as shown in Fig.
6/7a. The equivalent force required to push the movable thread up the
fixed incline is P � M/r, and the triangle of force vectors gives Eq. 6/3
immediately.

M � Wr tan (� � �)

W � ΣR cos (� � �) � [cos (� � �)] ΣR

M � [r sin (� � �)] ΣR
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Conditions for Unwinding
If the moment M is removed, the friction force changes direction so

that � is measured to the other side of the normal to the thread. The
screw will remain in place and be self-locking provided that � � �, and
will be on the verge of unwinding if � � �.

To lower the load by unwinding the screw, we must reverse the di-
rection of M as long as � � �. This condition is illustrated in Fig. 6/7b
for our simulated thread on the fixed incline. An equivalent force P �

M/r must be applied to the thread to pull it down the incline. From the
triangle of vectors we therefore obtain the moment required to lower
the screw, which is

(6/3a)

If � � �, the screw will unwind by itself, and Fig. 6/7c shows that the
moment required to prevent unwinding is

(6/3b)M � Wr tan (� � �)

M � Wr tan (� � �)
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SAMPLE PROBLEM 6/6

The horizontal position of the 500-kg rectangular block of concrete is ad-
justed by the 5� wedge under the action of the force P. If the coefficient of static
friction for both wedge surfaces is 0.30 and if the coefficient of static friction
between the block and the horizontal surface is 0.60, determine the least force P
required to move the block.

Solution. The free-body diagrams of the wedge and the block are drawn with
the reactions R1, R2, and R3 inclined with respect to their normals by the
amount of the friction angles for impending motion. The friction angle for limit-
ing static friction is given by � � tan�1 �. Each of the two friction angles is com-
puted and shown on the diagram.

We start our vector diagram expressing the equilibrium of the block at a
convenient point A and draw the only known vector, the weight W of the block.
Next we add R3, whose 31.0� inclination from the vertical is now known. The
vector �R2, whose 16.70� inclination from the horizontal is also known, must
close the polygon for equilibrium. Thus, point B on the lower polygon is deter-
mined by the intersection of the known directions of R3 and �R2, and their mag-
nitudes become known.

For the wedge we draw R2, which is now known, and add R1, whose direc-
tion is known. The directions of R1 and P intersect at C, thus giving us the solu-
tion for the magnitude of P.

Algebraic solution. The simplest choice of reference axes for calculation
purposes is, for the block, in the direction a-a normal to R3 and, for the wedge, in
the direction b-b normal to R1. The angle between R2 and the a-direction is
16.70� � 31.0� � 47.7�. Thus, for the block

For the wedge the angle between R2 and the b-direction is 90� � (2�1 �

5�) � 51.6�, and the angle between P and the b-direction is �1 � 5� � 21.7�. Thus,

Ans.

Graphical solution. The accuracy of a graphical solution is well within the
uncertainty of the friction coefficients and provides a simple and direct result. By
laying off the vectors to a reasonable scale following the sequence described, we
obtain the magnitudes of P and the R’s easily by scaling them directly from the
diagrams.

P � 2500 N

3750 cos 51.6� � P cos 21.7� � 0[ΣFb � 0]

R2 � 3750 N

500(9.81) sin 31.0� � R2 cos 47.7� � 0[ΣFa � 0]
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Helpful Hints

� Be certain to note that the reactions
are inclined from their normals in
the direction to oppose the motion.
Also, we note the equal and opposite
reactions R2 and �R2.

� It should be evident that we avoid si-
multaneous equations by eliminat-
ing reference to R3 for the block and
R1 for the wedge.
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SAMPLE PROBLEM 6/7

The single-threaded screw of the vise has a mean diameter of 1 in. and has 5
square threads per inch. The coefficient of static friction in the threads is 0.20. A
60-lb pull applied normal to the handle at A produces a clamping force of 1000 lb
between the jaws of the vise. (a) Determine the frictional moment MB, developed
at B, due to the thrust of the screw against the body of the jaw. (b) Determine
the force Q applied normal to the handle at A required to loosen the vise.

Solution. From the free-body diagram of the jaw we first obtain the tension T
in the screw.

The helix angle � and the friction angle � for the thread are given by

where the mean radius of the thread is r � 0.5 in.

(a) To tighten. The isolated screw is simulated by the free-body diagram
shown where all of the forces acting on the threads of the screw are represented
by a single force R inclined at the friction angle � from the normal to the thread.
The moment applied about the screw axis is 60(8) � 480 lb-in. in the clockwise
direction as seen from the front of the vise. The frictional moment MB due to the
friction forces acting on the collar at B is in the counterclockwise direction to op-
pose the impending motion. From Eq. 6/3 with T substituted for W the net mo-
ment acting on the screw is

Ans.

(b) To loosen. The free-body diagram of the screw on the verge of being loos-
ened is shown with R acting at the friction angle from the normal in the direc-
tion to counteract the impending motion. Also shown is the frictional moment
MB � 266 lb-in. acting in the clockwise direction to oppose the motion. The angle
between R and the screw axis is now � � �, and we use Eq. 6/3a with the net
moment equal to the applied moment M� minus MB. Thus

Thus, the force on the handle required to loosen the vise is

Ans.Q � M�/d � 374/8 � 46.8 lb

M� � 374 lb-in.

M� � 266 � 1600(0.5) tan (11.31� � 3.64�)

M � Tr tan (� � �)

MB � 266 lb-in.

480 � MB � 1600(0.5) tan (3.64� � 11.31�)

M � Tr tan (� � �)

� � tan�1 � � tan�1 0.20 � 11.31�

� � tan�1 L
2�r

� tan�1 1/5
2�(0.5)

� 3.64�

1000(16) � 10T � 0   T � 1600 lb[ΣMC � 0]
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Helpful Hints

� Be careful to calculate the helix
angle correctly. Its tangent is the
lead L (advancement per revolution)
divided by the mean circumference
2�r and not by the diameter 2r.

� Note that R swings to the opposite
side of the normal as the impending
motion reverses direction.



6/55 The device shown is used for coarse adjustment of the
height of an experimental apparatus without a change
in its horizontal position. Because of the slipjoint at A,
turning the screw does not rotate the cylindrical leg
above A. The mean diameter of the thread is in. and
the coefficient of friction is 0.15. For a conservative
design which neglects friction at the slipjoint, what
should be the minimum number N of threads per inch
to ensure that the single-threaded screw does not turn
by itself under the weight of the apparatus?

Problem 6/55

6/56 The doorstop is inserted with a rightward hori-
zontal force of 30 lb. If the coefficient of static
friction for all surfaces is , determine the
values and of the normal forces on the upper
and lower faces of the doorstop. With the given
information, can you determine the force P required
to extract the doorstop?

Problem 6/56
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PROBLEMS
(Unless otherwise instructed, neglect the weights of the
wedges and screws in the problems which follow.)

Introductory Problems

6/53 The wedge is driven under the spring-loaded
wheel whose supporting strut C is fixed. Determine
the minimum coefficient of static friction for
which the wedge will remain in place. Neglect all
friction associated with the wheel.

Problem 6/53

6/54 In wood-frame construction, two shims are fre-
quently used to fill the gap between the framing S
and the thinner window/door jamb D. The members
S and D are shown in cross section in the figure. For
the shims shown, determine the minimum neces-
sary coefficient of static friction necessary so that
the shims will remain in place.

Problem 6/54
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6/57 The elements of a deodorant dispenser are shown in
the figure. To advance the deodorant D, the knob C
is turned. The threaded shaft engages the threads
in the movable deodorant base A; the shaft has no
threads at the fixed support B. The 6-mm-diameter
double square thread has a lead of 5 mm. Determine
the coefficient of static friction for which the de-
odorant will not retract under the action of the force P.
Neglect friction at B.

Problem 6/57

6/58 A 1600-kg rear-wheel-drive car is being driven up
the ramp at a slow steady speed. Determine the
minimum coefficient of static friction for which
the portable ramp will not slip forward. Also deter-
mine the required friction force at each rear
drive wheel.

Problem 6/58
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6/59 Determine the force P required to force the 
wedge under the 90-kg uniform crate which rests
against the small stop at A. The coefficient of fric-
tion for all surfaces is 0.40.

Problem 6/59

Representative Problems

6/60 The two wedges shown are used to adjust the po-
sition of the column under a vertical load of 5 kN.
Determine the magnitude of the forces P required
to raise the column if the coefficient of friction for
all surfaces is 0.40.

Problem 6/60

6/61 If the loaded column of Prob. 6/60 is to be lowered,
calculate the horizontal forces P required to with-
draw the wedges.

�

P P
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Problem 6/64

6/65 Repeat Prob. 6/64, only now the 27-kg concrete
block begins to move down the incline as shown.
All other conditions remain as in Prob. 6/64.

Problem 6/65

6/66 The coefficient of static friction between the 100-lb
body and the wedge is 0.20. Determine the mag-
nitude of the force P required to begin raising the
100-lb body if (a) rollers of negligible friction are
present under the wedge, as illustrated, and (b) the
rollers are removed and the coefficient of static fric-
tion applies at this surface as well.

Problem 6/66
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6/62 Determine the torque M which must be applied to
the handle of the screw to begin moving the 100-lb
block up the incline. The coefficient of static
friction between the block and the incline is 0.50,
and the single-thread screw has square threads with
a mean diameter of 1 in. and advances 0.4 in. for
each complete turn. The coefficient of static friction
for the threads is also 0.50. Neglect friction at the
small ball joint A.

Problem 6/62

6/63 A compressive force of 600 N is to be applied to the
two boards in the grip of the C-clamp. The threaded
screw has a mean diameter of 10 mm and advances
2.5 mm per turn. The coefficient of static friction is
0.20. Determine the force F which must be applied
normal to the handle at C in order to (a) tighten and
(b) loosen the clamp. Neglect friction at point A.

Problem 6/63

6/64 The coefficient of static friction for both wedge sur-
faces is 0.40 and that between the 27-kg concrete
block and the incline is 0.70. Determine the
minimum value of the force P required to begin
moving the block up the incline. Neglect the weight
of the wedge.

20�

A B

C

100 mm

M

A 15°100 lb
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6/67 For both conditions (a) and (b) as stated in Prob.
6/66, determine the magnitude and direction of the
force P required to begin lowering the 100-lb body.

6/68 Calculate the horizontal force P on the light 
wedge necessary to initiate movement of the 40-kg
cylinder. The coefficient of static friction for both
pairs of contacting surfaces is 0.25. Also determine
the friction force at point B. (Caution: Check
carefully your assumption of where slipping occurs.)

Problem 6/68

6/69 The collar A has a force fit on shaft B and is to be re-
moved from the shaft by the wheel-puller mechanism
shown. The screw has a single square thread with a
mean diameter of 20 mm and a lead L of 6 mm. If a
torque of 24 N m is required to turn wheel C to slip
the collar off the shaft, determine the average pres-
sure p (compressive stress) between the collar and
the shaft. The coefficient of friction for the screw at E
is 0.25, and that for the shaft and collar is 0.30. Fric-
tion at the ball end D of the shaft is negligible.

Problem 6/69
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50 mm
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6/70 The vertical position of the 100-kg block is adjusted
by the screw-activated wedge. Calculate the moment
M which must be applied to the handle of the screw
to raise the block. The single-thread screw has square
threads with a mean diameter of 30 mm and ad-
vances 10 mm for each complete turn. The coefficient
of friction for the screw threads is 0.25, and the coef-
ficient of friction for all mating surfaces of the block
and wedge is 0.40. Neglect friction at the ball joint A.

Problem 6/70

6/71 Calculate the moment M which must be applied to
the handle of the screw of Prob. 6/70 to withdraw
the wedge and lower the 100-kg load.

6/72 The threaded collar is used to connect two shafts,
both with right-hand threads on their ends. The
shafts are under a tension T = 8 kN. If the threads
have a mean diameter of 16 mm and a lead of 4 mm,
calculate the torque M required to turn the collar in
either direction with the shafts prevented from
turning. The coefficient of friction is 0.24.

Problem 6/72
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6/73 The jack shown is designed to lift small unit-body
cars. The screw is threaded into the collar pivoted at
B, and the shaft turns in a ball thrust bearing at A.
The thread has a mean diameter of 10 mm and a
lead (advancement per revolution) of 2 mm. The 
coefficient of friction for the threads is 0.20. Deter-
mine the force P normal to the handle at D required
(a) to raise a mass of 500 kg from the position
shown and (b) to lower the load from the same posi-
tion. Neglect friction in the pivot and bearing at A.

Problem 6/73

�

150 mm
45°
45°

100 m
m

80 m
m

D

C

BA

6/74 The tapered pin is forced into a mating tapered
hole in the fixed block with a force P = 400 N. If the
force required to remove the pin (with P = 0) is P =
300 N, determine the coefficient of friction between
the pin and the surface of the hole. (Hint: The pres-
sure (stress) normal to the tapered pin surface re-
mains unchanged until the pin actually moves. The
distributed forces over the surface of the pin may be
replaced by an equivalent single resultant force.)

Problem 6/74
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