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Techniques of Integration

Owver the next few sections we examine some technigques that are frequently suceessiul when
seeking antiderivatives of functions. Sometimes this is a simple problem, since it will be
apparent that the function you wish to integrate is a derivative in some straight forward

[xm;ia:

we realize immediately that the derivative of ' will supply an 2'%: (2'") = 112", We
don’t want the “117, but constants are easy to alter, because differentiation “ignores” them
in certain circumstances, so

way. For example, faced with

d 1 oM = Lgp10 2 10,

dr 11 11

From our knowledge of derivatives, we can immediately write down a number of an-
tiderivatives. Here is a list of those most often used:

" mn+l )
fm dr = ] +C, ifn#E-—-1
fx_ld;r:ln|3:|+ﬂ'
fﬂ“:rﬂr=¢¥”:+ﬁ'

fsin:cd:c: —cosx O
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fcm:rrl:i:::ain:r +C
fsccz.rdac= tanx +

jsec.-r tanz iy = secr + O

1
_[1 e dr = arctanx +

dr = aresiny + O

8.1 SUBSTITUTION

Needless to say, most problems we encounter will not be so simple. Here's a slightly more
complicated example: find

f?.-i:mﬁ{.-i:zj da.

This is not a “simple” derivative, but a little thought reveals that it must have come from
an application of the chain rule. Multiplied on the “outside” is 22, which is the derivative
of the “inside” function z%. Checking:

isin{xzj = ms{f:l%acz = 2xcos(x?),

dr
S0

fzxmb{xgjda: = sin{2?) + .

Even when the chain rule has “produced” a certain derivative, it is not always casy to

f.-rs V1 —ax?de.

There are two factors in this expression, #° and v/ 1 — 22, but it is not apparent that the
chain rule is involved. Some clever rearrangement reveals that it is:

fwsm&:r= f{—?ﬂ:j (—%) {1—{1—3:?]]@{13:.

see. Consider this problem:

This looks messy, but we do now have something that looks like the result of the chain
rule: the function 1 — z° has been substituted into —(1/2)(1 — x)/z, and the derivative
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of 1 — %, =2z, multiplied on the outside. If we can find a function F(x) whose derivative
is —(1,/2)(1 — 274/ we'll be done, since then

A p(1— 2?) = 20 F (1 — 22) = (—24) (_%) (1— (1 - 22))V/1— 22

dax
ST

But this isn’t hard:

f -%(1 — )T de = f —%(&:”2 — M%) dz (8.1.1)
L2 g 2 e
=73 (%T s +C

So finally we have
fﬂ*"’xﬂ—mﬂd’m (%U —af) - ﬁ) (1-2%%* +C.

So wo succeeded, but it required a clever first step, rewriting the original function so
that it looked like the result of using the chain rule. Fortunately, there is a technique that
makes such problems simpler, without requiring cleverness to rewrite a function in just the
right way. It sometimes does not work, or may require more than one attempt, but the
idea is simple: guess at the most likely candidate for the “inside function”, then do some
algebra to see what this requires the rest of the function to look like.

One frequently good puess is any complicated expression inside a square root, so we
start by trying © = 1 — 2%, using a new variable, 1, for convenience in the manipulations
that follow. Now we know that the chain rule will multiply by the derivative of this inner

function:
dit _

— = Dy,
i *

s0 we need to rewrite the original function to include this:

—2z z° du
= g = et o e
f.L W1 — —-[.L\,J"E rI.L—f Eﬁdxm'

Recall that one benefit of the Leibniz notation is that it often turns out that what looks
like ordinary arithmetic gives the correct answer, even if something more complicated is
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going on. For example, in Leibniz notation the chain rule is

dy _dy
de ~ dt de’

The same is true of our current expression:
2 2
— it —dr = | —udu.
f SV T f Vv
Now we're almost there: since u =1 — 2, #° =1 — u and the integral is

f—%(l — 1t )y/ 1 .

It’s no coincidence that this is exactly the integral we computed in (8.1.1), wo have simply
renamed the variable ¢ to make the caleulations less confusing. Just as bofore:

f—%{l—u]vﬁdu = (%u— %) w4 O

Then sinece w = 1 — x%:

fwaﬂd:r= (%{1 —.'L‘E:I—%) {1—32]3“+C.

To summarize: if we suspect that a given function is the derivative of another via the
chain rule, we let @ denote a likely candidate for the inner function, then translate the
given function so that it is written entively in terms of w, with no 2 remaining in the
expression.  If we can integrate this new function of w, then the antiderivative of the
original function is obtained by replacing w by the equivalent cxpression in .

Even in simple cases you may prefer to use this mechanical procedure, since it often
helps to avoid silly mistakes. For example, consider again this simple problem:

f 2 cos(x?) d.

Let uw = z°, then du/dr = 2z or du = 2x dz. Since we have exactly 2z dz in the original
integral, we can replace it by du:

f?.-.i: cos{z?) dx = fcmnum = sinu + C = sin(z?) + C.

This is not the only way to do the algebra, and typically there are many paths to the
correct answer. Another possibility, for example, is: Since dufdr = 2z, dz = du/2z, and
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then the integral becomes
9 du
2rcos(z®)de = | 2xcos o= | cos et

The important thing to remember is that you must eliminate all instances of the original
variable &.

EXAMPLE 8.1.1 Evaluate f{u:&+b]“dﬂ:, assuming that a and b are constants, a # 0,

and n is a positive integer. We let © = ar + b s0 du = a de or dr = dufa. Then

L _ l i) _ 1 1 _ 1 71
f(ux+b) d:c—[au du_a_{n+1]u +U——a{n+1){ax+b) +C. .

EXAMPLE 8.1.2 Evaluate fsin{ﬂm +b) dz, assuming that a and b are constants and
a # 0. Again we let ©w = ax + b so du = adz or dx = du/a. Then

fﬁill{ﬂﬁf + b) dx = fi sin wduy = ll[—ﬂmwe.] +C = . cos{ax + b) + C.
a a a O

1
EXAMPLE 8.1.3 Evaluate [ rsin{z?) dz. First we compute the antiderivative, then
2

evaluate the definite integral. Let v = x° so du = 2x dr or xdx = du/2. Then

fﬁ”‘i"(ﬁ-‘?]i'ﬁ = fiﬁi“udﬂ = %{—ﬂmu] +C = —ltm(mgll + .

2 2
Now
b 1 2| 1 . 1
zsin{z)dr = —=cos(z")| = —=cos{16) + = cos{4).
J 2 2 0 2 2

A somewhat neater alternative to this method is to change the original limits to match
the variable ©. Since u = ,1.-2, when z =2, v =4, and when z = 4, © = 16. So we can do
this:

14 1 . 1
=3 cos(16) + 3 cos(4).

16 i i
fmsin{mﬁdm:f =sinudu = —=(cosu)
2 4 2 2

An incorrect, and dangerous, alternative is something like this:

1 1 ! !
fmsin(mﬁdm:f—ainudu: —~cos(u)
2 g 2 2

1
This is incorrect becanse f — sinu du means that v takes on values between 2 and 4, which
2

4

- —%{mﬂﬁl + : cos(4).

1
= ——cos(z?) 5

2

2 2

4

and forget
2

1
is wrong. It is dangerous, because it is very easy to get to the point -3 cos(u)




Al-Mustagbal University
Computer Techniques Eng. Dept.
1t Stage Mathematics |
Assist Lec. Anmar Fouad
15t term — Functions

1 1
to substitute z° back in for u, thus getting the incorrect answer -3 cos(4) + Ems{E). A
somew hat clumsy, but acceptable, alternative is something like this:

a=4 4
I SN _cm:‘{lﬂ] cos(4)
= 2n:cna:-(.i-: ) : = ; = 5

4 o=4 1 1
f rsin(z?) dr = f =sinu du = —=cos(u)
2 =1 2 2

x=1

(]

172

EXAMPLE 8.1.4 Evaluate f cos{nt)

174 sin®(mrt)
du/m = cos(mt) df. We change the limits to sin{r/4) = v2/2 and sin(7/2) = 1. Then

2 cos(mt Tl 'l 1!
/ ﬁﬁdt=/ __zd“':/ S ldu= =2 —
14 sin”(wt) JIja T S T T =1

Ezxercizses 8.1.

df. Let u = sin{wf) so du = 7eos(wt) df or

1 .
1 V2
£ V2

Find the antiderivatives or evaluate the definite integral in each problem.

1. [{J—t:ﬁ‘:ﬂ:u
3. fm{m“+1jlmm:=:-

P 1
5. fﬂm roosr dr =

2
x
Tl i;c
[ —dr =

0. EIRL dr =

ot

[ sin”(3x) cos(3x) dr =
Li]

11.

—

WES2
13, [ rsee {27 tan(x®) dr =
1]

1
. —
/: Gr_1r

Gr
1

19. fsm"mx:»
-1

15

2. [{1:2+]]|2d:x:=:-
4 [—] at =
) YT—5t
6. fxﬁ]ﬂﬂ—x‘*dx:;-
8. [w{ﬂt]w(sh{m}){it =
10. ft,anﬂcdjc =%

12. [mcz:t:l-mmdx =

14. ff"—m'{t’”’“:'::| dr =

coss T

w6

16. f {cos” x — sin® x) de =
L1}
1

18. [ (22% = 1)(a* = 22)° dlr =
-1

20. ff{n:]lf{:r:]lrﬁ:r: =
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8.2 POWERS OF SINE AND COSINE

Functions consisting of products of the sine and cosine can be integrated by using substi-
tution and trigonometric identitics. These can sometimes be tedious, but the technique is
straightforward. Some examples will suffice to explain the approach.

EXAMPLE 8.2.1 Evaluate f sin® z dz. Rewrite the function:

f:iin‘r’:rdm = fﬁill.‘i:h‘illj' rdr = fh'in:in:{h'inE ) de = f:iilw:{l —cosZx)? di.
Now use & = cosz, di = — sinx dr:
fsina:{l —cos x)* dxr = f—{l —u?) du
= f—{l —2u® 4+ u') du
= —un+ '—?u‘? - lﬂ‘r’ +C

3 i)

2 1 .
= —0oos T+ EL‘HHB,T-'— ccos’x + O
L, I.}
|

EXAMPLE 8.2.2 Evaluate fﬁinﬁmi:ﬁ. Use sin®x = (1 — cos(27))/2 to rewrite the

function:

_ 3
jh‘illﬂ.'i,‘ff"ﬂ _[{:iinE )P de = jm&r

1 .
= 3 fl — 3cos 22 + 3 cos® 23 — cos® 2z dr.

Now we have four integrals to evaluate:
f lde ==

3
f—Eoms 2edr = —Esinzsc

amd
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are easy. The cos” 2r integral is like the previous example:

f—cm32rdz= f—{:mlmmg 2adr

= j—L‘DH 2z(1 — sin® 2z) dx

And finally we use another trigonometric identity, cos? = (1 4 cos(2x)) /2:

/‘34:0:;22:1:&;: =3[W;j¢= % (E-‘+ Hll:irh.-).

So at long last we get
. . 3 :
. I 1. _ sin” 2z 3 sindx
fﬁlll zdr = 5 1ﬁtilll2:!-' 16 (z-un 2z 3 + G T+ 1 + . _

EXAMPLE 8.2.3 Evaluate /tiinz,irmm2 # dz. Use the formulas sin® & = (1 —cos(22))/2
and cos® z = (1 + cos(2x))/2 to get:

fsin?.-’mm:nﬁ2 xdr = f ! —czs{?x] . 1+ 036{21‘] di.

The remainder is lefi as an exercise.

Exercises 8.2.

Find the antiderivatives.

1. fsinzz:dz: = 2. fsinsz:d.'t: =

3. [sin‘imrﬁm =% 4. fomzmsinsmdm =%
5. /Cﬂ$3$d12 = 6. [sinzxcmzxdx =
7. [wssz:singzd: = a, [Sinx{ﬂtﬁx}'\iﬂ dr =

0. [mczmcsczmd;t::;- 10. [tml“;t:sc-cmd:t:::-



