Forced Convection

Dr. Majid H. Majeed

Forced Convection on Flat Plate

- Laminar Flow Re= $\frac{\rho L u}{\mu} = \frac{L u}{v}$
- $Re < 5 \times 10^5$
- Boundary layer thickness $\delta = \frac{4.91x}{\sqrt{Re_x}}$
- Local Drag of friction coefficient $C_{dx} = \frac{0.664}{\sqrt{Re_x}}$
- Local Nusult number $Nu = 0.332(Re)^{1/2}(Pr)^{1/3}$

- The mean value along the plate length
- $\bar{C}_{DL} = \frac{1.332}{\sqrt{Re_L}}$ for Re < 5x10⁵
- $\overline{Nu} = 0.664(Re)^{1/2}(Pr)^{1/3}$
- $\Pr = \frac{\mu \cdot Cp}{k} = \frac{\rho \vee Cp}{k}$ $\text{Nu} = \frac{h \cdot L}{k}$.
- To find the heat transfer coefficient $\bar{h} = \frac{Nu.k}{r}$
- $\dot{Q} = \bar{h}A(T_s T_{\infty})$
- The properties are evaluated at Film temperature
- $T_F = \frac{T_S + T_\infty}{2}$

Flow on Flat Plate

- Turbulent flow Re> 5x110⁵
- $\delta = \frac{0.38x}{\sqrt{Re_x}}$ and
- $\overline{C_d} = \frac{0.074}{\sqrt{Re_l}}$ $5 \times 10^5 \le Re_L \le 10^7$
- $Nu_x = 0.0296(Re_x)^{0.8}(Pr)^{1/3}$
- $\begin{cases} 0.6 \le Pr \le 60 \\ 5 \times 10^5 \le Re_x \le 10^7 \end{cases}$

Turbulent mean Nusselt

• Nu=0.037
$$(Re_L)^{0.8}(Pr)^{1/3}$$
 $\begin{cases} 0.6 \le Pr \le 60 \\ 5 \times 10^5 \le 10^7 \end{cases}$

 For total the plate the average in laminar and turbulent Region

• Nu=
$$(0.037(Re_L)^{0.8} - 871)(Pr)^{1/3}$$

$$\begin{cases}
0.6 \le Pr \le 60 \\
5 \times 10^5 \le 10^7
\end{cases}$$

Ex.1 Engine oil at $60^{\circ}C$ flows over the upper surface of a 5m long flat plate whose temperature is $20^{\circ}C$ with a velocity of 2m/s. Determine the total drag force and the rate of heat transfer per unit width of the entire plate.

Solution:
$$T_{\infty} = 60^{o}C$$
 $T_{\infty} = 20^{o}C$, L=5m, u=2m/s Film temperature $T_{F} = \frac{T_{S} + T_{\infty}}{2}$ $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, The proper $T_{F} = \frac{20 + 60}{2} = 30^{o}C$, $T_{F} = \frac{20 + 60}{2}$

• Re=
$$\frac{L.u}{V} = \frac{5\times2}{2.485\times10^{-4}} = 4.0\times10^4 < 5\times10^5$$

The flow is laminar

$$\overline{C_{DL}} = \frac{1.332}{\sqrt{Re_L}} = \frac{1.332}{\sqrt{4.0 \times 10^4}} = 0.00666$$

The Drug Force

$$F_D = \overline{C_{DL}} A \frac{\rho u^2}{2} = 0.00666(5 \times 1) \frac{876 \times 2^2}{2} = 58.34N$$

$$\overline{Nu} = 0.664(Re)^{0.5} (Pr)^{1/3} = 0.664(40000)^{0.5} (2962)^{1/3} = 1907.2$$

$$\bar{h} = \frac{Nu.k}{L} = \frac{1907.2 \times 0.1444}{5.0} = 55.1W/m^2.^{\circ} C$$

$$\dot{Q} = A\bar{h}(T_{\infty} - T_s) = (5 \times 1)55.1(60 - 20) = 11020W$$

Heat transfer from cylinders

• For heat transfer from cylinder with cross flow on it $Nu_{cyl} = \frac{h.D}{k} = C(Re)^m (Pr)^{1/3}$

Cross-section of the cylinder	Fluid	Range of Re	Nusselt number
Circle	Gas or liquid	0.4-4 4-40 40-4000 4000-40,000 40,000-400,000	$\begin{aligned} \text{Nu} &= 0.989 \text{Re}^{0.330} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.911 \text{Re}^{0.385} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.683 \text{Re}^{0.466} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.193 \text{Re}^{0.618} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.027 \text{Re}^{0.805} \ \text{Pr}^{1/3} \end{aligned}$

This table is used with upper relation

Ex.2. A long 10cm diameter pipe whose external surface temperature is 110^{o} C, passes through some open area that not protected against the winds. Determine the rate of heat loss from the pipe per unit length when the air at 1atm pressure and 10^{o} C and the wind is blowing across the pipe at a velocity of 8m/s.

Solution: The pipe is shown in Fig.

$$T_{\rm S} = 110^{\rm o} C$$
, $T_{\infty} = 10^{\rm o} C$,

$$T_S = \frac{T_S + T_\infty}{2} = \frac{110 + 10}{2} = 60^{\circ} C$$

The Properties of air is evaluated at $T_f = 60^o C$ Pr=0.7202, k=0.02808W/m.K, $v=1.896x10^{-5}m^2/s$ $Re = \frac{D.u}{v} = \frac{0.1 \times 8}{1.896 \times 10^{-5}} = 4.226 \times 10^4$ C=0.027, m=0.805 $Nu = 0.027(Re)^{.805}(Pr)^{1/3}$ $= 0.027(4.226 \times 10^4)^{.805}(0.7202)^{1/3}$ = 128.15 $h = \frac{Nu.k}{d} = \frac{128.15 \times 0.02808}{0.1}$ $-=36W/m^2k$ $\dot{Q} = Ah(T_S - T_\infty) = (\pi dl)h(T_S - T_\infty) = (0.1\pi \times 1)36(110 - 10) =$ 1131*W*