Heat transfer by flow in tubes

Prof. Dr. Majid

Laminar flow in tube

• If
$$Re_d = \frac{\rho du}{\mu} = \frac{du}{v} < 2300$$

- The flow is laminar flow
- For constant temperature Nu = 3.66
- For constant heat flux Nu=4.36
- For average Nusslet number for in side tube, the following correlation, have been developed

• Nu=3.66+
$$\frac{0.0668(D/L)Re.Pr}{1+0.04[(D/L)Re.Pr]^{2/3}}$$

Laminar flow in tube

- This correlation is used for laminar flow with constant wall temperature, fully developed flow,
- The properties are evaluated at bulk temperature.
- 0.5<Pr< 100 and Re< 2300 and also

•
$$Nu = 1.86 \left[\frac{D}{L} Re. Pr \right]^{1/3} \left[\frac{\mu}{\mu_S} \right]^{0.14}$$

Laminar flow in tubes

- This equation is valid for
- For short tube $\frac{L}{D} > 2$, Re< 2100
- 0.48<Pr<16400 , 0.0044< $\left(\frac{\mu}{\mu_S}\right)$ <9.75
- All properties are evaluated at bulk temperature except μ_s it is evaluated at surface temperature.

Ex.1 Water at $20^{\circ}C$ with a flow rate of 0.015kg/s enters a 2.5 cm ID tube which is maintained at uniform temperature of $90^{\circ}C$. Assuming hydrodynamic and thermally fully developed flow. Determine the heat transfer coefficient and the tube length required to heat the water to $70^{\circ}C$.

Solution: water at $T_{b1}=20^oC$ and $T_{b2}=70^oC$ Tube is at $T_s=90^oC$ mass flow rate $\dot{m}=0.015kg/s$, D=2.5cm=0.025m

$$T_b = \frac{T_{b1} + T_{b2}}{2} = \frac{20 + 70}{2} = 45^{\circ}C$$

Properties of water at 45^{o} C are: ρ =992.3kg/ m^{3} , k=0.638W/m. o C, Cp=4180J/kg. o C, v=0.613× $10^{-6}m^{2}/s$

Analysis: at the beginning we will find the type of flow.

$$\dot{m} = \rho A u = \rho \frac{\pi}{4} D^2 u$$
0.015=992.3× $\frac{\pi}{4}$ (0.025)² u
u=0.0308m/s

$$Re_d = \frac{Du}{V} = \frac{0.025 \times 0.0308}{0.613 \times 10^{-6}} = 1256.12$$

The flow is laminar because Re< 2300

Then Nu=0.366

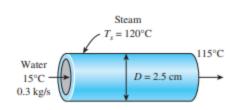
$$h = \frac{Nu.k}{D} = \frac{3.66 \times 0.638}{0.025} = 93.4W/m^2.^{\circ} C$$

The heat transfer to water is

$$\dot{Q} = \dot{m}Cp(T_{b2} - T_{b1}) = 0.015 \times 4180(70 - 20) = 3135W$$

To find the length of the tube

$$\Delta T_m = \frac{(T_s - T_{b1}) - (T_s - T_{b2})}{ln\frac{(T_s - T_{b1})}{(T_s - T_{b2})}} = \frac{(90 - 20) - (90 - 70)}{ln\frac{(90 - 20)}{(90 - 70)}} = \frac{70 - 20}{ln\frac{70}{20}} = 39.9^{\circ}C$$


Tube

$$\dot{Q} = \pi D L h \Delta T_m \rightarrow 3135 = \pi \times 0.025 \times L \times 93.4 \times 39.9 \rightarrow L = 10.71m$$

Ex. 2 Water enters a 2.5cminternal-diameter thin copper tube of a heat exchanger at 15^{o} C at a rate of 0.3 kg/s, and is heated by steam condensing outside at 120^{o} C. If the average heat transfer coefficient is $800\text{W}/\ m^2.^{o}$ C, determine the length of the tube required in order to heat the water to 115^{o} C.

Solution: D=0.025m, $\dot{m} = 0.3kg/s$

$$T_{b1} = 15^{o}C$$
, $T_{b2} = 115^{o}C$
 $T_{s} = 120^{o}C$, h=800W/ m^{2} . ^{o}C
Cp=4187J/kg. ^{o}C

To find the length of the tube

$$\dot{Q} = \dot{m}Cp(T_{b1} - T_{b2}) = 0.3 \times 4187(115 - 15)$$

 $\dot{Q} = 125610W$

$$\Delta T_m = \frac{(T_S - T_{b1}) - (T_S - T_{b2})}{ln \frac{(T_S - T_{b1})}{(T_S - T_{b2})}} = \frac{(120 - 15) - (120 - 15)}{ln \frac{(120 - 15)}{(120 - 115)}} = \frac{105 - 5}{ln \frac{105}{5}} = 32.85^{\circ} \text{C}$$

Heat transfer between water and tube surface is

$$\dot{Q} = A_s h \Delta T_m = \pi D L h \Delta T_m$$

125610= $\pi \times 0.025 \times L \times 800 \times 32.85 \rightarrow L = 60.86m$

Turbulent flow in tube

• For turbulent flow in tube $Re_D > 2300$ Following correlations are used

1-
$$\overline{Nu} = 0.023(Re_d)^{0.8}(Pr)^n$$

n=0.4 for heating
n=0.3 for cooling

It is valid for $\frac{L}{D} \ge 60$, $10^4 < Re < 12 \times 10^4$ $0.7 \le Pr \le 160$, all properties are evaluated at mean bulk temperature

Turbulent Flow

2.
$$Nu = 0.023(Re)^{0.8}(Pr)^{1/3}$$

 $Nu = 0.023(Re)^{-0.2}(Pr)^{2/3}$

It is valid for $\frac{L}{D} \ge 60$, $Re \ge 10^4$,

0.7 < Pr < 160 , The properties are evaluated at bulk temperature.

3.
$$\overline{Nu} = 0.025(Re)^{0.8}(Pr)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$$

It is valid for $\frac{L}{D} > 60$, $Re \ge 10^4$, $0.7 \le Pr \le 16700$

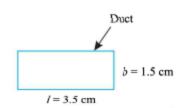
Properties are at mean bulk temperature except μ_s is at surface temperature.

Hydraulic Diameter

The hydraulic diameter is $D_H = \frac{4A}{P}$

A= cross-sectional area, P=Peremeter

- 1. For circular tube $D_H = \frac{4A}{P} = \frac{4\frac{\pi}{4}D^2}{\pi D} = D$
- 2. For square tube with side length=B


$$D_H = \frac{4A}{P} = \frac{4B^2}{4B} = B$$

3. In the annular for concentric circular tubes

$$D_{H} = \frac{4A}{P} = \frac{4\left(\frac{\pi}{4}D_{o}^{2} - \frac{\pi}{4}D_{i}^{2}\right)}{\pi D_{o} + \pi D_{i}} = \frac{D_{o}^{2} - D_{i}^{2}}{D_{o} + D_{i}} = \frac{(D_{o} + D_{i})(D_{o} - D_{i})}{D_{o} + D_{i}} = D_{o} - D_{i}$$

Ex.3 Water is heated while flowing through a 1.5cmx3.5cm rectangular tube at a velocity of 1.2m/s. The entering water temperature is $40^{\circ}C$ and tube wall is maintained at $85^{\circ}C$. Determine the length of the tube required to the temperature of water to raise by $35^{\circ}C$.

Solution: tube l=0.035m, b=0.015m u=1.2m/s, $T_{b1} = 40^{o}C$, $T_{S} = 85^{o}C$

$$\Delta T_b = 35^o C$$
, then $T_{b2} = T_{b1} + \Delta T_b = 40 + 35 = 75^o C$

$$T_b = \frac{T_{b1} + T_{b2}}{2} = \frac{40 + 75}{2} = 57.5^{\circ}C$$

Properties of water at $57.5^{o}C$, $\rho=985.5 \text{kg/}m^{3}$, $k=0.653 \text{W/m.}^{o}C$, $Cp=4190 \text{J/kg.}^{o}C$, $v=0.517 \text{x} 10^{-6} m^{2}/s$.

$$\dot{m} = \rho A_c u = \rho(l \times b)u =$$
 $985.5 \times (0.015 \times 0.035)1.2 = 0.621 kg/s$

$$\dot{Q} = \dot{m}Cp(T_{b2} - T_{b1}) = 0.621 \times 4190 \times 35 = 91069.65W$$

The hydraulic diameter
$$D_H = \frac{4lb}{2(l+b)} =$$

$$\frac{2(0.035 \times 0.015)}{0.035 + 0.015} = 0.021m$$

$$R_e = \frac{D_H u}{V} = \frac{0.021 \times 1.2}{0.517 \times 10^{-6}} = 48742.75$$

Re> 2300 It is turbulent flow

$$Pr = \frac{\mu \cdot Cp}{k} = \frac{\rho \vee Cp}{k} = \frac{985.5 \times 0.517 \times 10^{-6} \times 4190}{0.653} = 3.27$$

$$Nu = 0.023(Re)^{0.8}(Pr)^n$$
 n=0.4 for heating $Nu = 0.023(48742.75)^{0.8}(3.27)^{0.4} = 207.89$

$$h = \frac{Nu.k}{D_H} = \frac{207.89 \times 0.653}{0.021} = 6464.4W/m^2.^{\circ} C$$

$$\Delta T_m = \frac{(T_S - T_{b1}) - (T_S - T_{b2})}{(T_S - T_{b1})} = \frac{(85 - 40) - (85 - 75)}{(85 - 40)} =$$

$$\Delta T_m = \frac{(T_S - T_{b1}) - (T_S - T_{b2})}{ln \frac{(T_S - T_{b1})}{(T_S - T_{b2})}} = \frac{(85 - 40) - (85 - 75)}{ln \frac{(85 - 40)}{(85 - 75)}} = \frac{100}{ln \frac{(85 - 40)}{(85 - 40)}} = \frac{100}{ln \frac{(85 - 4$$

$$\frac{45-10}{ln\frac{45}{10}} = 23.27^{\circ}C.$$

$$\dot{Q} = PLh\Delta T_m$$

91069.65
= 2(0.035 + 0.015) $L \times 6464.4 \times 23.27$

L=6.054m