

Al-Mustaqbal University / College of Engineering & Technology Department: Medical Instrumentation Techniques Engineering

Class: Fourth

Subject: Control Systems / Code: MU0244002 Lecturer: Dr. Hasan Hamad Ali 2nd term – Lecture No. 11

Lecture name: Time Response Analysis

Steady-State Error

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^0(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^0(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Unit-Step Input: R(s) = 1/s r(t) = 1

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + G(0)}$$

• Static Position Error Constant, K_p : $K_p = G(0)$

$$e_{ss} = \frac{1}{1 + K_p}$$
 Constant Value

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^0(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^0(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Unit-Ramp Input: $R(s) = 1/s^2$ r(t) = t

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

- Static Velocity Error Constant, K_v : $K_v = \lim_{s \to 0} sG(s) = 0$

$$e_{ss} = \frac{1}{K_v} = \frac{1}{0} = \infty$$

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^0(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^0(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Unit-Parabolic Input (Acceleration Input): $R(s) = 1/s^3 r(t) = \frac{1}{2}t^2$

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

- Static Acceleration Error Constant, K_a : $K_a = \lim_{s \to 0} s^2 G(s) = 0$

$$e_{ss} = \frac{1}{K_a} = \frac{1}{0} = \infty$$

Al-Mustagbal University / College of Engineering & Technology **Department: Medical Instrumentation Techniques Engineering**

Class: Fourth

Subject: Control Systems / Code: MU0244002

Lecturer: Dr. Hasan Hamad Ali 2nd term – Lecture No. 11

Lecture name: Time Response Analysis

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^1(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^1(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Unit-Step Input: R(s) = 1/s r(t) = 1

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + G(0)}$$

• Static Position Error Constant, K_p : $K_p = G(0) = \infty$

$$e_{ss} = \frac{1}{1 + K_p} = \frac{1}{1 + \infty} = 0$$

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^1(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^1(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Unit-Ramp Input: $R(s) = 1/s^2$ r(t) = t

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

• Static Velocity Error Constant, K_v : $K_v = \lim_{s \to 0} sG(s) = K$

$$e_{ss} = \frac{1}{K_v} = \frac{1}{K}$$
 Constant Value

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^1(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^1(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Unit-Parabolic Input (Acceleration Input): $R(s) = 1/s^3 r(t) = \frac{1}{2}t^2$

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

- Static Acceleration Error Constant, K_a : $K_a = \lim_{s \to 0} s^2 G(s) = 0$

$$e_{ss} = \frac{1}{K_a} = \frac{1}{0} = \infty$$

Al-Mustagbal University / College of Engineering & Technology **Department: Medical Instrumentation Techniques Engineering**

Class: Fourth

Subject: Control Systems / Code: MU0244002

Lecturer: Dr. Hasan Hamad Ali 2nd term – Lecture No. 11

Lecture name: Time Response Analysis

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^2 (T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^2 (1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Unit-Step Input: R(s) = 1/s r(t) = 1

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + G(0)}$$

• Static Position Error Constant, K_p : $K_p = G(0) = \infty$

$$e_{ss} = \frac{1}{1 + K_p} = \frac{1}{1 + \infty} = 0$$

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^2(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^2(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Unit-Ramp Input: $R(s) = 1/s^2$ r(t) = t

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

- Static Velocity Error Constant, K_v : $K_v = \lim_{s \to 0} sG(s) = \infty$

$$e_{ss}=\frac{1}{K_{n}}=\frac{1}{\infty}=0$$

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^2(T_1 s + 1)(T_2 s + 1) \cdots} = \frac{K(1 + b_1 s + b_2 s^2 + \cdots)}{s^2(1 + a_1 s + a_2 s^2 + \cdots)}$$

$$e_{ss} = e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Unit-Parabolic Input (Acceleration Input): $R(s) = 1/s^3 \ r(t) = \frac{1}{2}t^2$

$$e_{ss} = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

- Static Acceleration Error Constant, K_a : $K_a = \lim_{s \to 0} s^2 G(s) = K$

$$e_{ss} = \frac{1}{K_a} = \frac{1}{K}$$

Al-Mustaqbal University / College of Engineering & Technology **Department: Medical Instrumentation Techniques Engineering**

Class: Fourth

Subject: Control Systems / Code: MU0244002

Lecturer: Dr. Hasan Hamad Ali 2nd term – Lecture No. 11 **Lecture name: Time Response Analysis**

Steady—State Errors for Unity Feedback Systems

$$K_n = G(0) \qquad R(s) = 1/s$$

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots}{s^q (T_1 s + 1)(T_2 s + 1) \cdots}$$

$$K_p = G(0)$$
 $R(s) = 1/s$
 $K_v = \lim_{s \to 0} sG(s)$ $R(s) = 1/s^2$

$K_a = \lim_{s \to 0} R(s) = 1$	$s^2G(s)$ $/s^3$	Step Input $R(s) = \frac{1}{s}$	Ramp Input $R(s) = \frac{1}{s^2}$	Acceleration Input $R(s) = \frac{1}{s^3}$
	Type o System	$\frac{1}{1+K}$	∞	∞
	Type 1 System	0	$\frac{1}{K}$	∞
	Type 2 System	0	0	$\frac{1}{\kappa}$

Example: What is the steady state error due to a unit step-input to a type 1 system?

Ans.

$$\frac{1}{1+K_{P}}$$

Example: What is the type and order of the system with the open loop transfer function 1/s(1+s)?

Ans. Type 1, second order.

Example: What is the steady state error $(ess(\infty))$ of the following system for a unit ramp input?

Solution:

$$K = \lim_{s \to 0} s. G(s) = \frac{672 * (0+5)}{(0+6)(0+7)(0+8)} = \frac{3360}{336} = 10$$

$$e_{ss} = \frac{1}{K} = \frac{1}{10} = 0.1$$

Al-Mustaqbal University / College of Engineering & Technology Department: Medical Instrumentation Techniques Engineering

Class: Fourth

Subject: Control Systems / Code: MU0244002 Lecturer: Dr. Hasan Hamad Ali 2nd term – Lecture No. 11

Lecture name: Time Response Analysis

Example: A unity feedback system with (s) = 48(s+5)/s(s+4)(s+2)(s+3), For a unit ramp input, what is the steady state error?

Solution:

$$K = \lim_{s \to 0} s. G(s) = \frac{48 * (0+5)}{(0+4)(0+2)(0+3)} = \frac{240}{24} = 10$$

$$e_{ss} = \frac{1}{K} = \frac{1}{10} = 0.1$$

Example: What is the step error coefficient of a system $G(s) = \frac{1}{(s+2)(s+3)}$ with unity feedback?

Solution:
$$K_p = \frac{1}{(0+2)(0+3)} = \frac{1}{6}$$