

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

 $\mathbf{1}^{\text{st}}/\mathbf{2}^{\text{nd}} \text{ term} - \text{Lecture No. \& Lecture Name (Ordinary differential Equations)}$

Ordinary Differential Equations
- First order Differential Equations (FODE).
is defined by an equation $\frac{dy}{dx} = f(x,y)$ of two variables
X and y
Types of FODE:
1- Variable Separation
2- Hamogenous eq.
3- Exact cq
3-Exact eq.
5. Bernoulli's eq.
Applications of FODE.
- Newton's law of cooling
- Growth and decay
- Growth and decay - Electrical circuts
- Falling body problems
- Falling body problems - Dilution problems.

Subject (Corrosion Engineering) / Code (MATH221)

Variable Sepan	rauon	***************************************	
This form is: $\int f(x) dx$. [90]		
) / (C) 4x	+ /)(9) 4	y = C	
x. V 50/ve; (x	2+1) dy =	= Xy -	
21			
$(x^2+1) dy =$	Xy dx	(÷ (x²+1)y))
(X ² +1) /.	ΧY		
$(X^2+1)y$	$=\frac{1}{(\chi^2 + 1)\gamma}$	d.x	
		······································	
$\int \frac{1}{y} dy = \int_{(x)}$	X dx		*******
	*********************	***************************************	
lny = 1 In (x	2 +1) + C		
$\ln/y/=\ln(x^2+1)$)	take exp.	.)
V / 2 1	Λ	(, c)	
$Y = \sqrt{X^2 + 1} +$	Α	$(A=e^{\epsilon})$	
$y = A \sqrt{X^2 + 1}$			••••••
/ - // // - //			********
	***************************************	***************************************	

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

Ex.2/ Find the Solution of exdy = 4, that subjected to Y(0)=3.
to y(o)=3. Solution:
$e^{x}dy = 4dx$
$e^{X} dy = 4 dx$ $dy = \frac{4}{e^{X}} dx$ $\int dy = \int 4e^{-X} dx$ $\therefore y = -4e^{-X} + C$ B.C.
$\int dy = \int 4e^{-x} dx$
$-y = -4e^{-x} + c$
3=-4e+C → C-7
: y=-4e+7

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

 $\mathbf{1}^{\text{st}}/\mathbf{2}^{\text{nd}} \text{ term} - \text{Lecture No. \& Lecture Name (Ordinary differential Equations)}$

2. Homogenous eq.
It can be solved by introducting a new dependent
Variable
-> y = 4 x -> dy = 4dx + xd4
-> y = 4 x -> dy = 4 x + xd4 Ex. 1/ solve; 2xdy = (x+y)dx Solvtion:
y=4x and dy=4dx+xd4] sub in DE
2x (udx + xd4) = (x + 4x) dx
2 X (4 d X + X d4) = X (1+4) d X]+X
2udx+2xdu=dx+udx
4dX + 2X dy = dX $2Xdy = dX - y dX$
$2 \times d y = d \times - y d \times$
$2xdy = ax - yax$ $2xdy = (1-u)dx \qquad \exists \div 2x(1-y)$
$\int \frac{1}{(1-u)} du = \int \frac{1}{2x} dx \rightarrow -\ln(1-u) = \frac{1}{2} \ln x + C$
$\ln(1-u)^{-1} = \ln x^{\frac{1}{2}} + \ln C$
In(1) = In/vx.c/] take exp.
$\frac{1}{1-4} = C\sqrt{X}$
$\frac{1}{1-\frac{\lambda}{A}} = C\sqrt{\lambda}$

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

3 Exact eq.

Standard Poin:
$$m(y,y) d x + N(x,y) d y = \sigma - - - O$$

Eq. 1 is Exact if $\frac{\partial m}{\partial y} = \frac{\partial N}{\partial x}$

Ex. 1 / Solve $(2xy^2 - 4) dx + (2x^2y + 3) dy = \sigma$

Sol/

 $\frac{\partial m}{\partial y} = \frac{\partial N}{\partial x}$
 $\frac{\partial m}{\partial y} = 4xy$
 $\frac{\partial m}{\partial x} = \frac{\partial m}{\partial x} = \frac{\partial m}{\partial x}$
 $\frac{\partial m}{\partial x} = 4xy$
 $\frac{\partial m}{\partial x} =$

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

1st/2nd term – Lecture No. & Lecture Name (Ordinary differential Equations)

X.2/150/ve = (4x3y3-2xy)dx + (3x4y2-x2)dy = 0

$$M = 4x^{3}y^{3} - 2xy$$

$$\frac{\partial M}{\partial y} = 12y^{2}x^{3} - 2x$$

$$N = 3x^{4}y^{2} - x^{2}$$

$$\frac{\partial N}{\partial x} = 12x^{3}y^{2} - 2x$$

$$\frac{\partial N}{\partial x} = 12x^{3}y^{2} - 2x$$

$$= \int_{-\infty}^{\infty} M(x_{1}y) dx + \int_{-\infty}^{y} N(x_{1}y) dy - \int_{-\infty}^{\infty} \int_{-\infty}^{y} N(x_{1}y) dy dy dx$$

$$\int_{-\infty}^{\infty} M(x_1 y) dx = \int_{-\infty}^{\infty} (4 x^3 y^3 - 2xy) dx$$

$$= x^4 y^3 - x^2 y$$

$$= x^{4}y^{3} - x^{2}y + x^{4}y^{3} - x^{2}y - x^{4}y^{3} + x^{2}y$$

$$f(x,y) = x^{4}y^{3} - x^{2}y$$

A Company and a control of the contr

Al-Mustaqbal University / College of Engineering & Technology (Chemical Engineering and Petroleum Industries Department) Class (3th)

Subject (Corrosion Engineering) / Code (MATH221)

4 Linear eq
General form: dy + p(x) y = Q(x); to solve it:
1- Determine Integration Factor I.F=e
2 Integrate and Solve y(x) = 1 I.F x (xx) olx + C
EX.1/Salve; dy + 34 = x2 at y(1) = 1
$P(x) = \frac{3}{x}$, $Q(x) = x^2$
$If = e^{\int \frac{3}{x} dx} \qquad If = e^{\frac{3 \ln x }{x}}$
:_IF = X
$y(x) = \frac{1}{X^3} \int x^3 x^2 dx + \frac{C}{X^3}$
- 1 I X J + C
X3 C
$\frac{6}{1} + \frac{13}{1} = \frac{13}{1} =$
$\frac{1}{6} = \frac{1}{6} + \frac{1}{1^3} \longrightarrow C = 0$
i. y - x

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

Ex-2/Solve the DE. $X \frac{dy}{dx} - y = X^2 \cos X$ at $y(\frac{\pi}{Z}) = T$ Solution: $X \frac{dy}{dx} - y = X^2 \cos X \xrightarrow{\dot{-}} X$
$\exists F = \emptyset$ $\exists F $
$ \mathcal{J} = X \sin X + XC $ $ \mathcal{B} = \frac{\pi}{2} \left(\sin \frac{\pi}{2} + C \right) (*2) $
$2 = \pi \left(\sin \frac{\pi}{2} + \epsilon \right)$ $2 = \sin \frac{\pi}{2} + \epsilon$
$2 = 1 + C \longrightarrow C = 1$ $y = X \sin X + X$

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

5-Bernoulli's equation Standard form: $\frac{dy}{dx} + p(x)y = Q(x)y^n$
to solveit, we set Z=y-n
Ex. Solve $\frac{dy}{dx} + \frac{1}{x}y = xy^2$ Sol: $Z = y^{1-2} \longrightarrow Z = y^1 \longrightarrow Z = \frac{1}{y}$ and $y = \frac{1}{z}$
$Z = y^{1-2} \longrightarrow Z = y^{1} \longrightarrow Z = \frac{1}{y}$ and $y = \frac{1}{z}$
$dy = \frac{-1}{Z^2} dZ$ (Sub in D.E)
$\frac{-1}{Z^2} \frac{dZ}{dx} + \frac{1}{XZ} = X \frac{1}{Z^2} \qquad (* - Z^2)$
dz z -x (linear form)
$If = e^{\int \frac{1}{x} dx} \rightarrow e^{\int \frac{1}{x} dx}$
$Z(x) = X \int_{X}^{1} *(-x) dx + CX$
$Z(x) = -x^2 + Cx$
$\frac{1}{3} = -x^2 + cx$
$\frac{1}{-X^2+CX}$

Subject (Corrosion Engineering) / Code (MATH221) Lecturer (2)

 $\mathbf{1}^{\text{st}}/\mathbf{2}^{\text{nd}} \text{ term} - \text{Lecture No. \& Lecture Name (Ordinary differential Equations)}$

237
Example (4) Salve = 18 x v2 , Sin (2 X - Y
Example (4) Salve 37 - 18xy2 + Sin (2x-y
Sol: Integrate wr. to x
201: LATEGRATE W.Y. to X
22 (2 X 2 COS (2X-4) (C)
- 18 y + F(9)
$\frac{\partial^2 Z}{\partial x \partial y} = \frac{18}{2} \frac{x^2}{2} \frac{y^2}{2} \frac{\cos(2x-y)}{2} + f(y)$
Integrate w r to X
Integrate w. r. to X
3
$\frac{\partial Z}{\partial y} = \frac{9}{3} \frac{x^3}{y^2} \frac{1}{2} \frac{\sin(2x-y)}{2} + F(y)$
= 7 - 1 - 1 + 1 - 1
Dy 30 2 2
The arate LIV to y
Integrate w.k.to y $ \frac{7-3x^3y^3/1[-\cos(2x-y)]}{3y^3-1}+F(y)+g(x) $
3
7 - 2 v 3 / 1 [-cos(2x-9)] [[(4) +q(x)
3 4 -1
· 7 /33 1 Fac (2x 1) + F(4) + 9(x)
:- Z = x3y3 1 cos (2x -y) + F(y) + g(x)
10 No.