Al-Mustaqbal University Department (Medical Instrumentation Techniques Engineering) Class (3rd)

Subject (Electrical Technology) Lecturer (Dr. Osamah Jaber Ghayyib) 1sterm – Lect. (Tutorial Week 15,16)

1. For the voltage built-up of a self-excited D.C. generator, which of the following is not an essential condition?

- a. There must be some residual flux.
- b. Field winding mmf must aid the residual flux.
- c. Total field circuit resistance must be less than the critical value.
- d. Armature speed must be very high.
- 2. If residual magnetism of a shunt generator is destroyed accidentally, it may be restored by connecting its shunt field
 - a. to earth.
 - b. to an A.C. source.
 - c. in reverse.
 - d. to a D.C. source.

3. If field resistance of a D.C. shunt generator is increased beyond its critical value, the generator

- a. output voltage will exceed its name-plate rating.
- b. will not build up.
- c. may burn out if loaded to its name-plate rating.
- d. power output may exceed its name-plate rating.

A CONTROL OF THE PARTY OF THE P

Al-Mustaqbal University Department (Medical Instrumentation Techniques Engineering) Class (3rd)

Subject (Electrical Technology)
Lecturer (Dr. Osamah Jaber Ghayyib)

1stterm – Lect. (Tutorial Week 15,16)

4. E_a can be determined using _____

- a. No-load characteristics.
- b. Load characteristics.
- c. Cannot be determined.
- d. Above OCC.

5. External Characteristic is a plot of _____

- a. Generated emf and load current.
- b. Terminal voltage and load current.
- c. Generated voltage and field current.
- d. Armature current and field current.

6. Open Circuit Characteristic a plot of _____

- a. Generated e.m.f. On load and the armature current.
- b. Generated e.m.f. At no-load and the field current at constant speed.
- c. The terminal voltage and load current.
- d. And load current and the armature current.

7. e.m.f. actually induced in the armature under load conditions is less than the e.m.f at no load of D.C generator due to _____.

- a. Internal resistance.
- b. The speed of the generator.
- c. Armature reaction.
- d. The load resistance.

Al-Mustaqbal University Department (Medical Instrumentation Techniques Engineering) Class (3rd)

Subject (Electrical Technology) Lecturer (Dr. Osamah Jaber Ghayyib) 1sterm – Lect. (Tutorial Week 15,16)

8. Intersection of Rf line and magnetization curve will give

- a. No load terminal voltage.
- b. Field current at no load.
- c. Both a and b.
- d. Not specific data.

9. What will happen if field resistance is decreased in DC generators?

- a. No load voltage will decrease.
- b. No load voltage will increase.
- c. No change in no load voltage.
- d. Field current will decrease.

10. No-load voltage observed at two different field resistance values, is $V_1 < V_2$. What will be the relation in speed if field resistance is kept same for both cases?

- a. $N_1 < N_2$.
- b. $N_1 = N_1$.
- c. $N_1 > N_1$.
- d. Can't determine from no-load voltage.

Ans 1-d, 2-d, 3-b, 4-a, 5-b, 6-b, 7-c, 8-c, 9-b, 10-a

Al-Mustaqbal University Department (Medical Instrumentation Techniques Engineering) Class (3rd)

Subject (Electrical Technology) Lecturer (Dr. Osamah Jaber Ghayyib) 1stterm – Lect. (Tutorial Week 15,16)

Problems

1- The magnetization characteristic for a 4-pole, 110-V, 1000 r.p.m. shunt generator is as follows:

Field current	0	0.5	1	1.5	2	2.5	3 A
O.C. voltage	5	50	85	102	112	116	120 V

Armature is lap-connected with 144 conductors. Field resistance is 45 ohms. Determine

- (i) Voltage the machine will build up at no load.
- (ii) The critical resistance.
- (iii) The speed at which the machine just fails to excite.
- (iv) Residual flux per pole.

Ans: - (Eg = 118 V, Rc = 100
$$\Omega$$
, Nc = 445 r. p. m., Φ = 2.08 mWb)

2- The O.C.C. of a d.c. generator driven at 400 rev/min is as follows:

Field current (A)	:	2	3	4	5	6	7	8	9
Terminal volts	:	110	155	186	212	230	246	260	271

Find:

- (i) Voltage to which the machine will excite when run as a shunt generator at 400 rev/min with shunt field resistance equal to 34 Ω .
- (ii) Resistance of shunt circuit to reduce the O.C. voltage to 220 V.

A CONTROL OF THE CONT

Al-Mustaqbal University Department (Medical Instrumentation Techniques Engineering) Class (3rd)

Subject (Electrical Technology) Lecturer (Dr. Osamah Jaber Ghayyib) 1stterm – Lect. (Tutorial Week 15,16)

- (iii) Critical value of the shunt field circuit resistance.
- (iv) The critical speed when the field circuit resistance is 34 Ω .
- (v) Lowest possible speed at which an O.C. voltage of 225 V can be obtained.

Ans: - (Eg = 255 V, Rf = 40.7
$$\Omega$$
, Rc = 62.2 Ω , Nc = 218 r. p. m., N low = 375 r. p. m.,