

جامـــــعـة المــــسـتـقـبـل AL MUSTAQBAL UNIVERSITY

كلية العلــــوم قــســــــم علوم الذكاء الاصطناعي

المحاضرة الثانية

mathematics : المادة المرحلة : الاولى اسم الاستاذ: م.د. رياض حامد سلمان

Al-Mustaqbal University College of Science

المصفوفات MATRICES

The Trace of a Matrix:(اثر المصفوفة)

If there is a square matrix A (n x n), the **trace of this matrix** is defined as the sum of the diagonal elements in the square matrix. For example

$$A = \begin{pmatrix} -2 & 5 & 12 \\ 3 & 6 & -5 \\ 1 & 8 & 4 \end{pmatrix}$$

$$\therefore trace A = tr A = \sum_{i=1}^{n} a_{ii}$$

$$\therefore tr A = -2 + 6 + 4 = 8$$

The trace satisfies the following properties:

$$tr (A+B) = tr A + tr B$$

$$tr CA = C tr A$$

$$tr (AB) = tr (BA)$$

$$tr I_n = n$$

$$tr (IA) = tr (A)$$

Some Special Matrices:

(مصفوفة الصف) Row Matrix

A matrix that has only **one row** is called a Row Matrix, and it is sometimes referred to as a Row Vector. This matrix is denoted by the symbol (A) and its order is (1 x n). For example:

$$(A)_{1\times 3} = \begin{pmatrix} 3 & 6 & 5 \end{pmatrix}$$

Al-Mustaqbal University College of Science

Column Matrix:

A matrix that has only one column is called a **Column Matrix**, and it is sometimes referred to as a **Column Vector**. This matrix is denoted by the symbol **[A]**, and its order is **(m x 1)**. For example:

$$: [A]_{4\times 1} = \begin{bmatrix} 2\\1\\4\\7 \end{bmatrix}$$

(المصفوفة المربعة) Square Matrix

A square matrix is a matrix in which the number of rows equals the number of columns. For example, the following matrix:

$$\begin{pmatrix} 1 & -3 & 4 \\ 2 & 4 & 3 \\ 6 & 5 & 7 \end{pmatrix}$$

(المصفوفة القطرية) Diagonal Matrix

A diagonal matrix is a square matrix in which all elements are zero except for the elements on the main diagonal (the diagonal that runs from the top-left element to the bottom-right element ($a_{11}a_{22}$, ..., a_{mn}) For example, the following matrix:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

المصفوفة القياسية ومصفوفة الوحدة: Scalar and Unit Matrix

A diagonal matrix in which all the elements on its main diagonal are equal is called a Scalar Matrix. If the elements on the main diagonal of a scalar matrix are equal to one, it is called a

Unit Matrix or Identity Matrix. This matrix is denoted by the symbol I_n where **n x n**

represents the order of the matrix. For example:

	(1	Δ	0)			(1	0	0	0)	
<i>I</i> ₃ =	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$,	$I_4 =$	0	1	0	0	
						0	0	1	0	
						0	0	0	1	

In general, if A is a square matrix of order $(m \times m)$ and $I_{m \times n}$ is the unit (identity) matrix of the same order, then:

$$IA = AI = A$$

 $I = I^2 = I^3 = \dots = I^k$ حيث k عدد صحيح موجب ويمكن إثبات ذلك بسهولة.

By multiplying any matrix **A** by the identity matrix **I**, the matrix **A** remains unchanged, provided that the multiplication of the two matrices follows the previously stated rules of matrix multiplication. For example:

A كما هي بدون تغيير بفرض قابلية ضرب	بضرب أي مصفوفة A في مصفوفة الوحدة تبقى المصفوفة .	à
-	لمصفوفتين حسب قانون ضرب المصفوفات السابق، فمثلاً:	

(1	0	0)		2		2	
0	1	0	×	3	=	3	
0	0	1)		5		5	

Study Year: 2024-2025

Al-Mustaqbal University College of Science

كذلك إذا كانت:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix}$$
$$\therefore IA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix} = A$$
$$\therefore AI = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix} = A$$

Study Year: 2024-2025