

Inferential Statistics

Probability and statistic – Lecture (10)

Inferential Statistics

Asst.lect Mustafa Ameer Awadh

First Stage

DEPARTMENT OF CYBER SECURITY

SUBJECT:

INFERENTIAL STATISTICS

CLASS:

FIRST

LECTURER:

ASST. LECT. MUSTAFA AMEER AWADH

LECTURE: (10)

Inferential Statistics Probability and statistic – Lecture (10) First Stage

Asst.lect Mustafa Ameer Awadh

Lecture: Inferential Statistics

Introduction

Inferential statistics allows us to make predictions or inferences about a population based on data collected from a sample. Unlike descriptive statistics, which summarize data, inferential statistics help us draw conclusions and test hypotheses.

1. Sampling Distributions

Definition:

A sampling distribution is the probability distribution of a statistic (e.g., mean, proportion) obtained from repeated random samples of the same size.

Key Concepts:

- **Population vs. Sample:** The population includes all individuals, while a sample is a subset.
- Sampling Variability: Different samples can lead to different estimates.
- Central Limit Theorem (CLT):
 - If the sample size is large $(n \ge 30)$, the sampling distribution of the sample mean approaches a normal distribution, regardless of the original population's distribution.
 - \circ The mean of the sampling distribution equals the population mean ().
 - The standard deviation of the sampling distribution (standard error) is given by: where is the population standard deviation and is the sample size.

2. Confidence Intervals (CIs)

Definition:

A confidence interval provides a range of values that likely contain the true population parameter with a certain level of confidence.

Page | 2

Inferential Statistics Probability and statistic – Lecture (10) First Stage

Asst.lect Mustafa Ameer Awadh

Formula for Confidence Interval (Mean):

For a population mean (when is known): where:

- = sample mean
- = critical value from the standard normal table (e.g., 1.96 for 95% confidence)
- = standard error

Common Confidence Levels:

Confidence Level Z-Score

90%	1.645
95%	1.96
99%	2.576

Interpretation:

A 95% confidence interval means that if we repeated sampling many times, 95% of the intervals would contain the true population parameter.

3. Hypothesis Testing

Definition:

Hypothesis testing is a statistical method used to decide whether to accept or reject a hypothesis about a population.

Steps in Hypothesis Testing:

- 1. State the Hypotheses:
 - Null Hypothesis (): Assumes no effect or difference.
 - Alternative Hypothesis (): Assumes an effect or difference exists.
- 2. Select the Significance Level ()
 - Typical values: 0.05 (5%) or 0.01 (1%).
 - A smaller reduces the risk of a false positive.
- 3. Choose the Test Statistic
 - **Z-test** (when population standard deviation is known and sample size is large)
 - **T-test** (when is unknown and sample size is small)

Inferential Statistics

Probability and statistic – Lecture (10)

Inferential Statistics

First Stage

Asst.lect Mustafa Ameer Awadh

4. Compute the p-value

- The probability of obtaining a test statistic as extreme as the observed one, assuming is true.
- 5. Compare p-value with
 - If **p-value** $\leq \rightarrow$ Reject (significant result)
 - If p-value > \rightarrow Fail to reject (not significant)

Example:

A company claims that the average weight of their product is 500g. A sample of 30 products has a mean weight of 495g with a standard deviation of 10g. Test at .

- ٠
- •
- Compute Z-score:
- Find p-value: (less than 0.05, so reject)
- Conclusion: The product weight is significantly different from 500g.

4. p-values and Significance Levels

Definition:

The p-value measures the probability of observing the given test statistic under .

Interpretation:

- Low p-value (≤ 0.05): Strong evidence against ; reject it.
- High p-value (> 0.05): Weak evidence against ; fail to reject it.
- **p-value = 0.05:** Borderline case.

Level Confidence Level Decision Rule

- 0.10 90% Less strict
- 0.05 95% Standard
- 0.01 99% Very strict

Inferential Statistics

Probability and statistic – Lecture (10)

First Stage

Inferential Statistics

Asst.lect Mustafa Ameer Awadh

Conclusion

- Sampling distributions help estimate population parameters.
- Confidence intervals provide a range where the true value lies.
- Hypothesis testing determines whether there is enough evidence to support a claim.
- **p-values** help assess the strength of evidence against the null hypothesis.