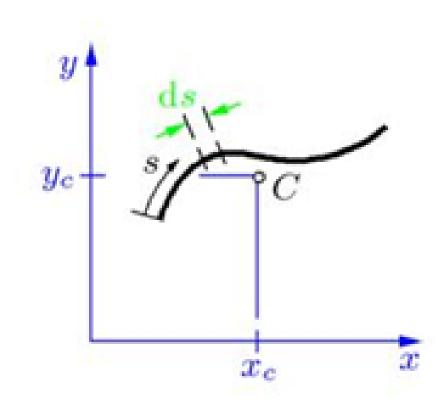
Engineering mechanics

Lecture 9:

Center of Gravity and centroid application

Dr. MUSLIM MUHSIN ALI

Objectives

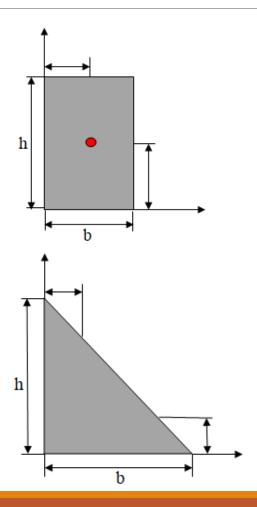

After studying this Lecture, you will be able to

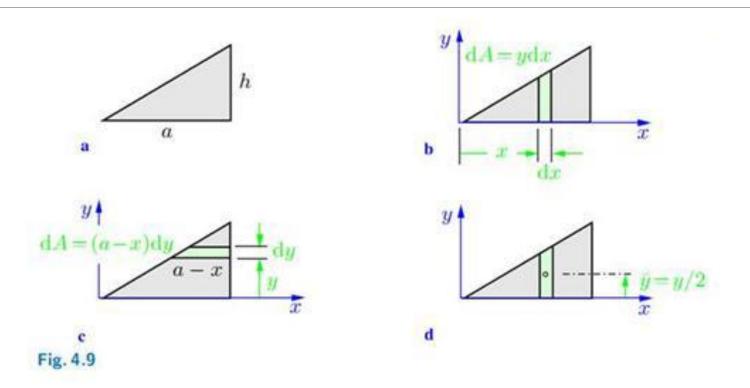
Define Center of Gravity and centroid application

centroid application

Centroid: The centroid is a point which defines the geometrical center of an object. 1-Lines. For a slender rod or wire of length L, cross-sectional area A, and density p, Fig., the body approximates a line segment, and dm = pA dL. If P and A are constant over the length of the rod, the coordinate s of the center of mass also become the coordinates of the centroid C of the line segment, which, from Eqs., may be written

$$\overline{x} = \frac{\int x \, dL}{L} \qquad \overline{y} = \frac{\int y \, dL}{L} \qquad \overline{z} = \frac{\int z \, dL}{L}$$


2-Areas. When a body of density p has a small but constant thickness t, we can model it as a surface area A, Fig... The mass of an element becomes dm = pi dA. Again, if p and t are constant over the entire area, the coordinates of the center of mass of the body also become the coordinates of the centroid C of the surface area, and d from Eqs. The coordinates may be written


$$\bar{x} = \frac{\int x \, dA}{A} \qquad \bar{y} = \frac{\int y \, dA}{A} \qquad \bar{z} = \frac{\int z \, dA}{A}$$

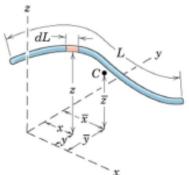
Areas uniform:

1- Rectangle: Area=b*h The centroid (b/2,h/2)

2- triangle: Area=(1/2)b*h The centroid (b/3,h/3)

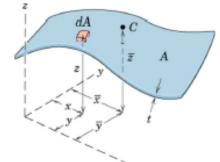
$$x_c = rac{1}{A}\int x\,\mathrm{d}A\,,\quad y_c = rac{1}{A}\int y\,\mathrm{d}A\,.$$

Shape		x	ÿ	Area
Triangular area	$\frac{1}{ \frac{y}{2} + \frac{b}{2} + \frac{b}{2}$		$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area	c c	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	C c b	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	$\begin{array}{c c} c & \hline \\ \hline$	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$


Semiparabolic area	$c \leftarrow c \qquad \frac{1}{h}$	$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$\begin{array}{c} 0 \\ \rightarrow \\ \hline \overline{x} \\ \hline \end{array} \begin{array}{c} 1 \\ \hline \end{array} \end{array}$	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic spandrel	$O = \begin{bmatrix} a & & & \\ & y & = kx^2 & & \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\frac{3a}{4}$	$\frac{3h}{10}$	$\frac{ah}{3}$
General spandrel	$O = \frac{a}{x} + \frac{a}{y} + \frac{h}{y} + $	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector	C	$\frac{2r\sin\alpha}{3\alpha}$	0	αr^2

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes


Centroid is a geometrical property of a body

→ When density of a body is uniform throughout, centroid and CM coincide

Lines: Slender rod, Wire Cross-sectional area = $A \rho$ and A are constant over $L dm = \rho AdL$; Centroid = CM

$$\overline{x} = \frac{\int x dL}{L} \quad \overline{y} = \frac{\int y dL}{L} \quad \overline{z} = \frac{\int z dL}{L}$$

Areas: Body with small but constant thickness t

Cross-sectional area = A ρ and A are constant over A $dm = \rho t dA$; Centroid = CM

$$\overline{x} = \frac{\int x dA}{A} \quad \overline{y} = \frac{\int y dA}{A} \quad \overline{z} = \frac{\int z dA}{A}$$
Numerator = First moments of Area

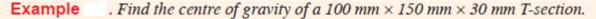
dV G V dw w x x x

Volumes: Body with volume V ρ constant over V $dm = \rho dV$ Centroid = CM

$$\overline{x} = \frac{\int x dV}{V} \quad \overline{y} = \frac{\int y dV}{V} \quad \overline{z} = \frac{\int z dV}{V}$$

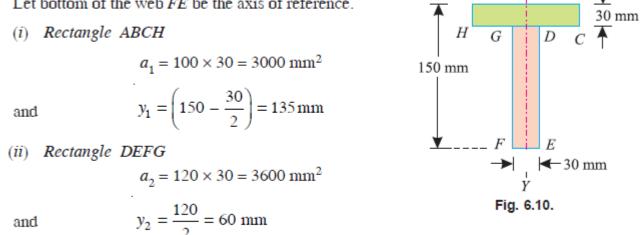
Examples: Centroids

Locate the centroid of the triangle along h from the base


Solution:

- dA = xdy $\frac{x}{(h-y)} = \frac{b}{h}$
- Total Area A = $\frac{1}{2}bh$ $y = y_c$

$$\overline{x} = \frac{\int x_c dA}{A} \quad \overline{y} = \frac{\int y_c dA}{A} \quad \overline{z} = \frac{\int z_c dA}{A}$$


$$A\bar{y} = \int y_c dA \quad \Rightarrow \frac{bh}{2}\bar{y} = \int_0^h y \frac{b(h-y)}{y} dy = \frac{bh^2}{6}$$
$$\bar{y} = \frac{h}{3}$$

Solution. As the section is symmetrical about Y-Y axis, bisecting the web, therefore its centre of gravity will lie on this axis. Split up the section into two rectangles ABCH and DEFG as shown in Fig 6.10. $_A | \leftarrow 100 \text{ mm} \rightarrow B \downarrow$

Let bottom of the web FE be the axis of reference.

We know that distance between centre of gravity of the section and bottom of the flange FE,

$$\overline{y} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(3000 \times 135) + (3600 \times 60)}{3000 + 3600} \text{ mm}$$

= 94.1 mm Ans.

Example Find the centre of gravity of a channel section $100 \text{ mm} \times 50 \text{ mm} \times 15 \text{ mm}$.

Solution. As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on this axis. Now split up the whole section into three rectangles ABFJ, EGKJ and CDHK as shown in Fig. 6.11.

Let the face AC be the axis of reference.

(i) Rectangle ABFJ

$$a_1 = 50 \times 15 = 750 \text{ mm}^2$$

and $x_1 = \frac{50}{2} = 25 \text{ mm}$
(ii) Rectangle EGKJ
 $a_2 = (100 - 30) \times 15 = 1050 \text{ mm}^2$
and $x_2 = \frac{15}{2} = 7.5 \text{ mm}$
(iii) Rectangle CDHK
 $a_3 = 50 \times 15 = 750 \text{ mm}^2$
and $x_3 = \frac{50}{2} = 25 \text{ mm}$

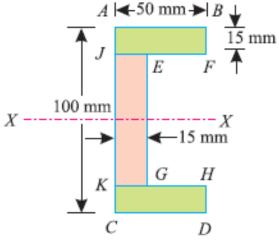


Fig. 6.11.

We know that distance between the centre of gravity of the section and left face of the section
$$AC$$
,

$$\overline{x} = \frac{a_1 x_1 + a_2 x_2 + a_3 x_3}{a_1 + a_2 + a_3}$$
$$= \frac{(750 \times 25) + (1050 \times 7.5) + (750 \times 25)}{750 + 1050 + 750} = 17.8 \text{ mm} \text{ Ans.}$$

Example Find the centre of gravity of a channel section $100 \text{ mm} \times 50 \text{ mm} \times 15 \text{ mm}$.

Solution. As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on this axis. Now split up the whole section into three rectangles ABFJ, EGKJ and CDHK as shown in Fig. 6.11.

Let the face AC be the axis of reference.

(i) Rectangle ABFJ

$$a_1 = 50 \times 15 = 750 \text{ mm}^2$$

and $x_1 = \frac{50}{2} = 25 \text{ mm}$
(ii) Rectangle EGKJ
 $a_2 = (100 - 30) \times 15 = 1050 \text{ mm}^2$
and $x_2 = \frac{15}{2} = 7.5 \text{ mm}$
(iii) Rectangle CDHK
 $a_3 = 50 \times 15 = 750 \text{ mm}^2$
and $x_3 = \frac{50}{2} = 25 \text{ mm}$

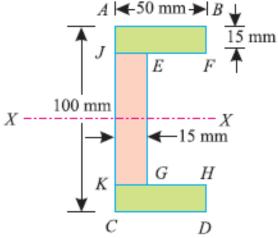
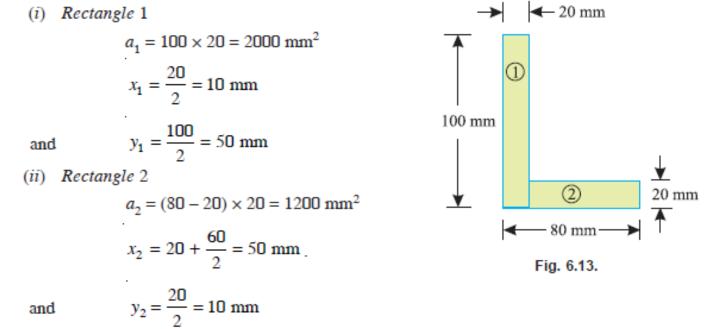


Fig. 6.11.

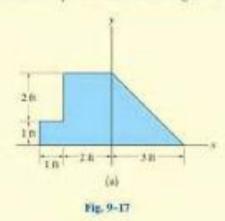

We know that distance between the centre of gravity of the section and left face of the section AC,

$$\overline{x} = \frac{a_1 x_1 + a_2 x_2 + a_3 x_3}{a_1 + a_2 + a_3}$$
$$= \frac{(750 \times 25) + (1050 \times 7.5) + (750 \times 25)}{750 + 1050 + 750} = 17.8 \text{ mm} \text{ Ans.}$$

Example Find the centroid of an unequal angle section 100 mm × 80 mm × 20 mm.

Solution. As the section is not symmetrical about any axis, therefore we have to find out the values of \overline{x} and \overline{y} for the angle section. Split up the section into two rectangles as shown in Fig. 6.13.

Let left face of the vertical section and bottom face of the horizontal section be axes of reference.


We know that distance between centre of gravity of the section and left face,

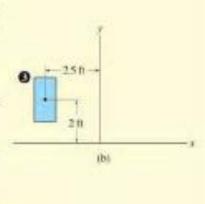
$$\overline{x} = \frac{a_1 x_1 + a_2 x_2}{a_1 + a_2} = \frac{(2000 \times 10) + (1200 \times 50)}{2000 + 1200} = 25 \text{ mm} \text{ Ans.}$$

Similarly, distance between centre of gravity of the section and bottom face,

$$\overline{y} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(2000 \times 50) + (1200 \times 10)}{2000 + 1200} = 35 \text{ mm}$$
 Ans.

Locate the centroid of the plate area shown in Fig. 9-17a.

SOLUTION


Composite Parts. The plate is divided into three segments as shown in Fig. 9–17b. Here the area of the small rectangle (3) is considered "negative" since it must be subtracted from the larger one (2).

Moment Arms. The centroid of each segment is located as indicated in the figure. Note that the 3 coordinates of (2) and (3) are negative.

Summations. Taking the data from Fig. 9-17b, the calculations are tabulated as follows:

Contraction of the second se	4.5
-(2)(1) = -225 - 2 - 5	13.5
s felled a sub a to	-4
$\Sigma A = 11.5$ $\overline{\Sigma T A} = -4$ $\overline{\Sigma T}$	23/4 = 14

EXERCISE

- Find the centre of gravity of a T-section with flange 150 mm × 10 mm and web also 150 mm × 10 mm. [Ans. 115 mm for bottom of the web]
- Find the centre of gravity of an inverted T-section with flange 60 mm × 10 mm and web 50 mm × 10 mm
 [Ans. 18.6 mm from bottom of the flange]

 Find the centre of gravity of an T-section with top flange 100 mm × 20 mm, web 200 mm × 30 mm and bottom flange 300 mm × 40 mm.

[Ans. 79 mm from bottom of lower flange]