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THE FORCE

= Force: An action of one body on another. the force is a
vector quantity, because its effect depends on the
direction as well as on the magnitude of the action.
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= The effect of cable tension on the bracket in fig 2/1
depends on the force vector P, the angle 6, and the
location of the point of application A.

= Changing any one of these three specifications will
alter the effect on the bracket,




PRINCIPLE OF TRANSMISSIBILITY

= The principle of transmissibility, states that a force
may be applied at any point on its given line of action
without altering the resultant effects of the force external
to the rigid body on which it acts.
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FORCE CLASSIFICATION

= Contact force. A contact force is produced by direct
physical contact; an example is the force exerted
on a body by a supporting surface.

= Body force is generated by virtue of the position of a
body within a force field such as a gravitational,
electric, or magnetic field. An example of a body
force is your weight.




= Concentrated or distributed force. The force to be
concentrated at a point with negligible loss of accuracy.
Force can be distributed over an area.

= The weight of a body is the force of gravitational attraction
distributed over its volume and may be taken as a
concentrated force acting through the center of gravity.

= Action and Reaction: According to Newton’s third law, the
action of a force is always accompanied by an equal and
opposite reaction.
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CONCURRENT FORCES

= Two or more forces are said to be concurrent at a point if
their lines of action intersect at that point. The forces F1
and F2 shown in Fig. 2/3a.

= Suppose the two concurrent forces lie in the same plane
but are applied at two different points as in Fig. 2/3b.




= By the principle of transmissibility. We can replace F1
and F2 with the resultant R without altering the external
effects on the body upon which they act.

= We can also use the triangle law to obtain R, but we
need to move the line of action of one of the forces, as
shown in Fig. 2/3c.




RECTANGULAR COMPONENTS

= The most common two-dimensional resolution of a force
vector is into rectangular components. the vector F may
be written as:
F=F+F

Where Fx and Fy are vector components of F in the x-
and y-directions.




= In terms of the unit vectors i and j we may write:

F=Fi+ ij
Where:
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CONVENTIONS FOR DESCRIBING VECTOR COMPONENTS
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DETERMINING THE COMPONENTS OF A FORCE

R=F, +F,=Fi+Fj)+Fi+FyjJ)
or
Ri+Rj=(F +F)i+([F +F,)j
from which we conclude that

R1=F11+FEI=EFI
R}'=F]-I+FEI=EFJ"
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Sample Problem 2/1

The forces F1, F2, and F3, all of which act on point A of
the bracket, are specified in three different ways.
Determine the x and y scalar components of each of
the three forces.
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Solution. The scalar components of F,, from Fig. a, are

Fl; = 600 cos 35° = 491 N
Flj = 600 sin 35° = 344 N

The scalar components of F,, from Fig. b, are

I

F, = —EI}D(%) - —400N

F, = EI}D(%) — 300N

F,=600N F,=500N

Ans.
Ans.

Ans.

Ans.



The scalar cnmlz;unents of F; can be obtained I:;}r first computing the angle o
of Fig. c.

= [ﬁ} — 96.6°

0.4
Then F3 = F5 sin a = 800 sin 26.6° = 358 N Ans.
Faj, = —Fycosx = —800cos 26.6°= —TI6 N Ans.




Sample Problem 2/2

Combine the two forces P and T, which act on the

fixed structure at B, into a single equivalent force R.




Graphical solution. The parallelogram for the vector addition of forces T and
P is constructed as shown in Fig. a. The scale used here is 1 em = 400 N; a scale
of 1 em = 100 N would be more suitable for regular-size paper and would give
greater accuracy. Note that the angle @ must be determined prior to construction

of the parallelogram. From the given figure

BD 6 sin 60°
tan o = — = = (.866 = 40.9°
“ AD 3+ 6 cos 60° “

Measurement of the length R and direction # of the resultant force R yields the
approximate results

R=0525N f =49 Ans.

B S00N




Geometric solution. The triangle for the vector addition of T and P is shown
(2) in Fig. b. The angle « is calculated as above. The law of cosines gives

R2 = (600)2 + (800)% — 2(600)(800) cos 40.9° = 274,300

R =524 N Ans.
From the law of sines, we may determine the angle # which orients R. Thus,

600 D24

- = — in & = 0.7560 g = 48.6° Ans.
sin# smn409° =i

500 N




Algebraic solution. By using the x-y coordinate system on the given figure,
Wwe may write

R, = IF, = 800 — 600 cos 40.9° = 346 N
R, = XF, = —600 sin 40.9° = —393 N

The magnitude and dipection of the resultant force R as shown in Fig. ¢ are then

R=JR*+R?=,(346)* + (—393)* = 524 N Ans.
IR, 393

# = tan™! =tan ! — = 48.6° Ans.
R, -

The resultant R may also be written in vector notation as

R=Ri+Rj=3461 — 393 N Ans.



Sample Problem 2/3

The 500-N force F is applied to the
vertical pole as shown.

(1) Write F in terms of the unit vectors
i and j and identify both its vector
and scalar components.

(2) Determine the scalar components
of the force vector F along the x -
and y-axes.

(3) Determine the scalar components
of F along the x- and y-axes.




Solution. Part (1). From Fig. a we may write F as
F = (F cos )i — (F sin 6)j
= (500 cos 60°)1 — (500 s1n 60°)]
_ (250i — 433j) N Ans.

The scalar components are F, = 250 N and F, = —433 N. The vector compo-
nents are F, = 2501 N and F, = —433j N.

(ax)



Part (2). From Fig. b we may write F as F = 5001" N, so that the required
scalar components are

F,.=500N F,=0 Ans.

¥



Part (3). The components of F in the x- and y'-directions are nonrectan-
gular and are obtained by completing the parallelogram as shown in Fig. ¢. The
magnitudes of the components may be calculated by the law of sines. Thus,

- |Fyl 500
] . = — F|=1000N
D sin 90°  sin 30° 7
Fyl 500
sin 60°  sin 30° I¥y| = 866 N
The required scalar components are then
F,=1000N F,=-866N Ans.




2/7 The two structural members, one of which 1s 1n ten-
sion and the other in compression, exert the indicated
forces on joint O. Determine the magnitude of the re-
sultant R of the two forces and the angle # which R
makes with the positive x-axis.

Ans. R = 3.61 kN, # = 206°

3 kN

Problem 2/7
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2/11 The t-component of the force F 13 known to be 75
N. Determine the n-component and the magnitude

of F.
Ans. F, = —629N,F=979N
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2/15 Determine the magnitude F; of the tensile spring
force 1n order that the resultant of F, and F 1s a ver-
tical force. Determine the magnitude R of this verti-

cal resultant force.
Ans. F,=250N,R = 433 N

F=500N

Problem 2/15






2/18 Determine the scalar components R, and R} of the
force R along the nonrectangular axes a and b. Also

determine the orthogonal projection P, of R onto
axis a.

R=800N

Problem 2/18






2/19 Determine the resultant R of the two forces shown
by (a) applying the parallelogram rule for vector ad-

dition and (b) summing scalar components.
Ans. R = 5201 — 7009 N

400 N

Problem 2/19
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2/24 The cable AB prevents bar OA from rotating clock-
wise about the pivot 0. If the cable tension 1s 750 N,
determine the n- and f-components of this force act-
ing on point A of the bar.
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