Architecture Engineering Department Engineering mechanics

Lecture 5:

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS

Dr. MUSLIM MUHSIN ALI

INTRODUCTION

In the previous lecturer, we have discussed the various methods of finding out resultant force, when a particle is acted upon by a number of forces. This resultant force will produce the same effect as produced by all the given forces. A little consideration will show, that if the resultant of a number of forces, acting on a particle is zero, the particle will be in equilibrium. Such a set of forces, whose resultant is zero, are called equilibrium forces. The force, which brings the set of forces in equilibrium is called an equilibrant. As a matter of fact, the equilibrant is equal to the resultant force in magnitude, but opposite in direction.

PRINCIPLES OF EQUILIBRIUM

Though there are many principles of equilibrium, yet the following three are important from the subject point of view:

- 1. Two force principle. As per this principle, if a body in equilibrium is acted upon by two forces, then they must be equal, opposite and collinear.
- 2. Three force principle. As per this principle, if a body in equilibrium is acted upon by three forces, then the resultant of any two forces must be equal, opposite and collinear with the third force.
- 3. Four force principle. As per this principle, if a body in equilibrium is acted upon by four forces, then the resultant of any two forces must be equal, opposite and collinear with the resultant of the other two forces.

1-For Coplanar forces system

a-concurrent coplanar forces system

$$Rx=0$$
, $Ry=0$, $R=0$

b-non-concurrent coplanar forces system

$$Rx=0$$
, $Ry=0$, $R=0$, $\Sigma M=0$

2-Non coplanar forces system:

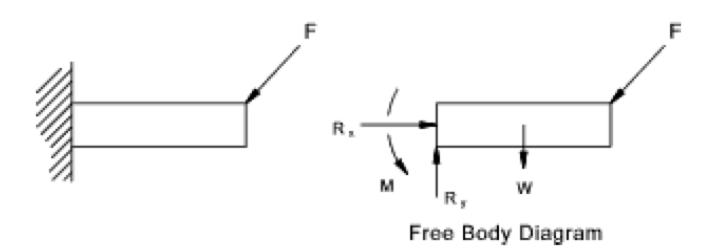
a-concurrent non-coplanar forces system

$$Rx=0$$
 , $Ry=0$, $R=0$, $\Sigma M=0$

b-non-concurrent non-coplanar forces system

$$Rx=0$$
 , $Ry=0$, $R=0$, $\Sigma M=0$

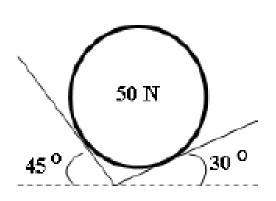
METHODS FOR THE EQUILIBRIUM OF COPLANAR FORCES

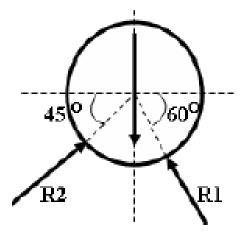

Though there are many methods of studying the equilibrium of forces, yet the following are important from the subject point of view:

- 1. Analytical method.
- 2. Graphical method.

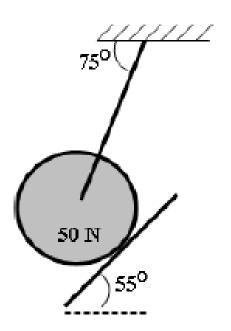
ANALYTICAL METHOD FOR THE EQUILIBRIUM OF COPLANAR FORCES

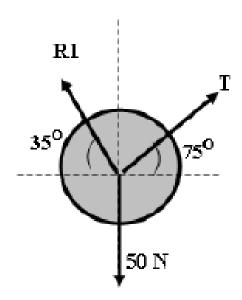
The equilibrium of coplanar forces may be studied, analytically, by Lami's theorem as discussed below:

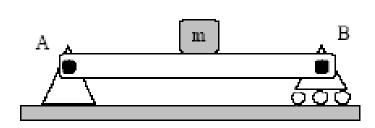

Free body diagram: is a sketch to show all the forces and reactions acting on the body For example: The free body diagram includes external forces applied to the body and external reaction forces resulting from the method of supporting the body



Free - body diagram and the mechanical effects


T1 Cd 1 1	TT1 CC . Cd 1 1	E 1 1 1:
The name of the body	The effect of the body	Free-body diagram
Earth		
	ا (<i>ا</i>	
		Y
		+
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Flexible cables	2////	
And ropes	9	8
And ropes		
	 	⊢ -
Cantilever beam	1 1/4	l Fy
		M J
	2	
		Fx -
Smooth surface	_	
	_ 	
		θ\
D-11 111-		─ ↔` ─
Rollers , balls		
cylinders		+
		<u> </u>
Smooth pins	կլ.	Fy
	Xu	<u> </u>
	`	Fx

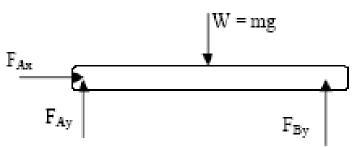

Ex1:Draw Free - body diagram for the 50 N sphere shown in fig.


Ex2:Draw Free - body diagram for the 50 N sphere shown in fig.

Examples

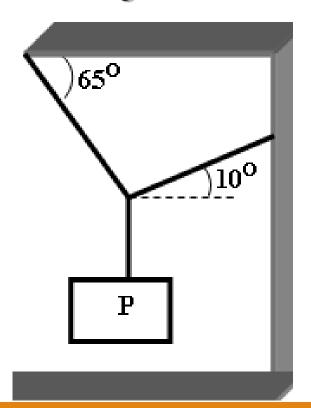
Mass at mid-point on beam (length L)

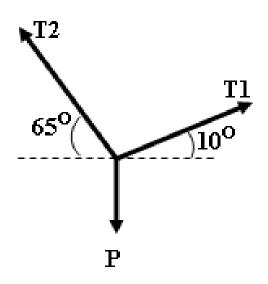
x-component forces $F_{Ax} = 0$

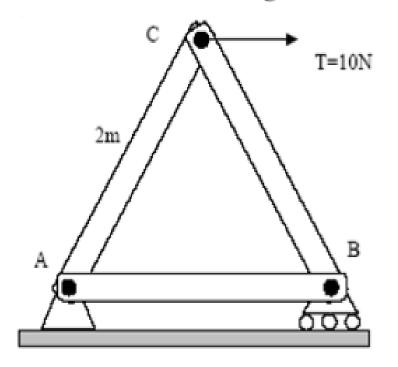

y-component forces
$$F_{Ay} + F_{By} - W = 0$$

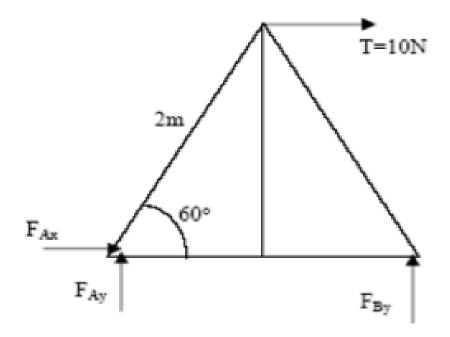
Final result

$$F_{Ax} = 0$$
,


$$F_{Ay} = F_{By} = \frac{1}{2} W = \frac{1}{2} mg$$


Free body diagram


moments about mid-point (or use A or B) $-\frac{1}{2}L F_{Ay} + \frac{1}{2}L F_{By} = 0$


Example: Draw Free body diagram for the ropes system shown in fig

Example: Draw Free body diagram for simple structure with a cable shown in fig

