Source Coding & Data Compression

| - Useful Compression Terms

- Compression Performance
- Statistical Compression Methods (RLE)
- Dictionary Compression Methods (LZ77)

i Useful Compression Terms

- Adaptive / Non-adaptive Compression
- Lossy/Lossless Compression

- Perceptive Compression

- Symmetric/ Asymmetric Compression
- Universal Compression

i Compression Performance

_ _ size of the output stream
Compression ratio =

size of the input stream

_ size of the input stream
Compression factor =

size of the output stream

For Images and Moving Pictures (film):
- Bit per pixels (bpp)
- Peak Signal to Noise Power Ratio or PSNR (in dB)

Statistical Compression/ Run Length Encoding

Run Length Encoding (RLE) make use of the runs in the source output to
perform a source coding method in which only the length of character run is
sent rather than the actual repeated characters. This is usually need a
special character to be declared to indicate the presence of run. This special
character is known as escape character. The following represent the
development of RLE which are introduced first for FAX transmission and later
developed for standard image and video compression systems.

1- Simple RLE (# is the escape character)
.. AABBBCCCCAAAAAACCCCBAAA...
#A2, #B3, #C4, #A6, #C4, B, #A3
2- Simple RLE (Binary source for FAX)
11111000000011100001111100000001111111. .. oo oo u L

vl (no scape char.) 15, 07, 13, 04, 15, 07, 17

v2(alternate values 1,0,1,0..) 5, 7, 3, 4, 5, 7, 7
V3(differential or relative) 5, 2, -4, 1, 1, 2, 0,.....

Q- Find the compression factor of above examples. 3

i RLE Image Compression — JPEG

' G| | RGB 1o YIQ

-
faptianal) Q

— T,

_— i

far each plane (sean)

for each DCT Quant

sx8 hiock
DPCM Zig-zag
fTuffman or f L
01101... -=f RLE | Run Length Encoder!
Arithmetic L -

4

Dictionary Compression Methods

1- LZ77 or Sliding Window;

In peneral, an LETT token has three parts: offset, length, and next symbol 1n the
look-shead buffer (which, in our case, 1= the second e of the word teases). Thiz token
1= wntten on the output stream, and the window 1= shifted to the night (or, alternatively,
the input stream 13 moved to the left) four positions: three positions for the matched
strnng and one posmtion for the next symbol.

. ..8ir Eid eastman easily tease|s sea sick geals...|...

If the backward search yields no match, an LZTT token wath zero offset and length
and with the unmatched symbaol 15 written. This 1= also the reason a token has to have

a thard component. Tokens with zero offset and length are common at the beginming of

any compression job, when the search buffer 1s empty or almost empty. The first five
steps in encoding our example are the following:

| [sir =id eastman | = (0,0,%87)
| 8[ir =id eastman q = (0,0,%1i7)
| gi[r,,5id, eastman, eal = (0.0,c7)
| sir|, =sid, eastman eas] = (0.0.%7)
| Bir [sid eastman easi = (4,2,°d7)

The next step matches the space and encodes the stnng “ e

o

| Bir, 5id| eastman, easily,] = (4,1,%"
| sir, aid, @lastman, easily, te = (0,0.%2°
and the next one matches nothing and encodes the “a”. 5

of

Example for LZ77:

Use LZ77 to compress the following string:

sirhsid"eastman”easilyteases*sea’sick"seals......

sirfsidMeast

man”easily*teases”sea’sickseals......

sirhsideastm

an”easily*"teases”*sea”sick"seals......

sirhsidMeastman

NeasilyMteases”sea’rsick”seals......

Token
Search Buffer Look Ahead Buffer
D M Next

sirfsidfeastman”easily*teases”sea”sick”seal... 0O 0 s
s|ir*sid*eastman”easily*teases”sea”rsick"seal... 0O 0 i
si{r*sid*eastman”easily*teases”*sea”sick”seal... O 0 r
sir|Asid"eastman”easily*teases”sea”sick*seals O 0 A
sir’|sid*eastman”easily*teases”*sea”*sick"seals...... 4 2 d
sirfsid| *eastman”easily*teasessea’sick”seals...... 4 e

sirfsidMe|astman”easily*teasessea’sickseals...... 0

sirfsidMea|stman”easily*teasessea’sick?seals...... 6

0

4

8

0

sirhsid eastman”easi

lyrteasessea’sick?seals......

o |d|lr|lO|R|O| P
S5 (3|~ @

sirhsid eastman”easil

y teases”sea’rsick”seals......

...etc

