

Source Coding in Brief

NOTE:

A source code should be decodable and has the least value of L (or the highest efficiency). This is achieved by good code design by providing the following:

- A. A decodable code should have prefix property. Prefix property means any codeword should not be a prefix of any other codeword. (as in Code#4).
- B. To have small L, one should look at the equation: $L = \sum_{x} P(x_i) \cdot l_i$ and deduced that we must choose small l_i for large $P(x_i)$.

3-Source Coding Design

The word design means that we have the source with symbol probabilities, construct or find the code table with least L and should be decodable.

A. Design of Fixed Length Code:

This is very simple and we just need to find L. Using $L = \lceil Log_D M \rceil$ where M is the number of source symbols, and D is the code alphabet size (for binary code D=2).

The operator [] means the upper integer (also called the ceiling). The code assignment may take any value.

Example-1 Design fixed length binary code for the source shown below:

Symbol	Probability	Fixed Length Code		
x_i	$P(x_i)$	Codeword	l_i	
<i>x</i> ₁	0.05	000	3	
x_2	0.2	110	3	
x_3	0.1	010	3	
x_4	0.3	111	3	
<i>x</i> ₅	0.15	011	3	
<i>x</i> ₆	0.08	101	3	
<i>x</i> ₇	0.12	100	3	
$L = [Log_D M]$ = $[Log_2 7] = [2.807] = 3$		L= 3 Bits/Symbol		
$\eta_{sc} = \frac{H(x)}{L}.100$	% = ?	$\eta_{sc} = ?$		

Example-2 Repeat Example-1 for Ternary code 0,1,2 (D=3)

Symbol x_i	Probability $P(x_i)$	Fixed Length Code		
		Codeword	l_i	
<i>x</i> ₁	0.05	00	2	
x_2	0.2	10	2	
x_3	0.1	21	2	
x_4	0.3	02	2	
<i>x</i> ₅	0.15	11	2	
<i>x</i> ₆	0.08	20	2	
<i>x</i> ₇	0.12	22	2	
$\mathbf{L} = [Log_D M]$		L= 2 Ternary unit		
$= [Log_37] = [1.771] = 2$		/Symbol		
$\eta_{sc} = \frac{H(x)}{L}.100\% = ?$		$\eta_{sc} = ?$		

B. Design of Variable Length Code:

Method#1: Fano Method

In this method the code construction is performed bit by bit to ensure decodable and least length code.

Design Steps:

- 1- Arrange all source symbols in descending order according to their probabilities.
- 2- Divide the symbols into D subsets, with almost equal sum probabilities in subsets.
- 3- Assign different code alphabet to each subset.
- 4- Repeat steps-2 and 3, until there is only one symbol in the subset.

Example-3 Design binary Fano code for the source in Example-1 (D=2)

$\begin{array}{c} \text{Symbol} \\ x_i \end{array}$	Probability $P(x_i)$	1 st Bit Assignment	2 nd Bit Assignment	3 rd Bit Assignment	4 th Bit Assignment	Assigned Codeword	l_i
<i>x</i> ₄	0.3	0	0			00	2
x_2	0.2	0	1			01	2
x_5	0.15	1	0	0		100	3
x_7	0.12	1	0	1		101	3
x_3	0.1	1	1	0		110	3
x_6	0.08	1	1	1	0	1110	4
x_1	0.05	1	1	1	1	1111	4

 $L = \sum_{x} P(x_i) \cdot l_i = 2.63 \text{ Bits/Symbol } H(x) = -\sum_{x} P(x_i) \cdot Log P(x_i) = 2.60288 \text{ Bits/Symbol}$ $\eta_{sc} = \frac{H(x)}{L} \cdot 100\% = 98.97\%$ The above code is decodable.

Q.2 Repeat Example-3 with D=3.

Method#2: Huffman Method (Compact Coding)

In this method the code construction is performed in groups of D symbols to ensure minimum length and decodable code. In general, $L_{Huffman} \leq L_{Fano}$

Design Steps:

- 1- Arrange all source symbols in descending order according to their probabilities.
- 2- Sum the probabilities of the last D symbols, consider them as one symbol then re-arrange the symbols in descending order according to their probabilities.
- 3- Repeat step-2 until the final symbol (where the sum =1)
- 4- For each summing node, assign different code alphabet symmetrically.
- 5- The codeword for each symbol is given by those code alphabets assigned earlier along the traced path from the final node to given symbol.

Example-4 Design binary Huffman code for the source in Example-1 (D=2)

Q.3 Repeat Example-4 with D=3.

Example. (Huffman Code)

