

College of Pharmacy Fifth Stage

Pharmaceutical Biotechnology

Dr. Maytham Ahmed

Lectutre 4
Excipients Used in Parenteral Formulations of
Biopharmaceuticals

Excipients Used in Parenteral Formulations of Biopharmaceuticals

Excipients in Biopharmaceuticals

- ▶ As other dosage form, biopharmaceuticals also contain a number of excipients that are selected to serve different purposes.
- Our concern is that the biopharmaceuticals are a complex dosage form that required special consideration in formulation as follow:
- Most of these product are designed for parenteral administration.
- 2. The nature of protein which can be considered as unstable product due to multiple ways of instability that turns the protein inactive.
- 3. The special processing included in formulation of biotech product such as aseptic preparations.
- In addition, if the dosage form is designed for multiple injection system, this will add additional complexity to the dosage form.
- Both the choice of the excipient and its concentration are important. For instance, low concentrations of polysorbates may stabilize the protein, while higher concentrations may cause denaturation.

Protein Instability

Proteins are unstable

Chemical instability

Physical instability

- Deamidation
- Oxidation
- Proteolysis (hydrolysis)
- Disulfide shuffling
- Racemization
- Beta elimination

- Conformational
- Unfolding Misfolding
- Colloidal
- Aggregation Precipitation
- Adsorption

4

Example of Excipients in Marketed Biopharmaceuticals

Excipient class	Function	Examples
Buffers	pH control, tonicity	Histidine, phosphate, acetate, citrate, succinate
Salts	Tonicity, stabilization, viscosity reduction	Sodium chloride
Sugars ^a , polyols	Tonicity, stabilization, cryoprotection, lyoprotection ^b , bulking agent ^b , reconstitution improvement ^b	Sucrose, trehalose, mannitol, sorbitol
Surfactants	Adsorption prevention, solubilization, stabilization, reconstitution improvement ^b	Polysorbate 20, polysorbate 80, poloxamer 188
Amino acids	Stabilization, viscosity reduction, tonicity, pH control, bulking agent ^b	Arginine, glycine, histidine, lysine, proline
Anti-oxidants	Oxidation prevention	Methionine, sodium edetate
Preservativesc	Bacterial growth prevention	m-cresol, benzyl alcohol, phenol

Solubility Enhancement

- Proteins, in particular those that are non-glycosylated, may have a tendency to aggregate and precipitate.
- Approaches that can be used to enhance solubility include:
- 1. Selection of the proper pH conditions.
- 2. Addition of amino acids such as lysine or arginine (used to solubilize tissue plasminogen activator, t-PA).
- Surfactants such as sodium dodecyl sulfate to solubilize non-glycosylated IL-2 can also help to increase the solubility.

SOLUBILITY ENHANCEMENT

Effect of arginine on type I and type II alteplase at pH 7.2 and 25 °C. A type I alteplase, B type II alteplase, C 50:50 mixture of type I and type II alteplase.

Solubility Enhancement

- The mechanism of action of these solubility enhancers depends on the type of enhancer and the protein involved.
- This figure clearly indicates the dramatic effect of arginine concentration on the apparent solubility of t-PA.
- It is believed that arginine will increase the hydrogen bonding ability of the protein.
- In the above examples, aggregation is physical in nature, i.e., based on hydrophobic and/or electrostatic interactions between molecules.

Solubility Enhancement

- However, aggregation based on the formation of covalent bridges between molecules through disulfide bonds and ester or amide linkages has been described as well.
- In those cases, proper conditions should be found to avoid these chemical reactions such as controlling pH of the solution and adding anti-adsorption agents.

Anti-adsorption and Anti-aggregation Agents:

- Most proteins are prone to adsorb to interfaces.
- Anti-adsorption agents are added to reduce adsorption of the active protein to interfaces.
- These interfaces can be water—air, water—container wall, or interfaces formed between the aqueous phase and utensils used to administer the drug (e.g., catheter, needle).
- For solid surfaces (such as protein container wall):
- Adsorbed, partially unfolded protein molecules not only present a loss of API (Active Pharmaceutical Ingredient) but also may form aggregates, leave the surface, return to the aqueous phase, and form larger aggregates, and precipitate.

Anti-adsorption and Anti-aggregation Agents

- A similar situation may occur at **gas-liquid** interfaces.
- For some proteins the reconstitution protocol instructs to swirl the vial instead of shaking it to avoid protein exposure to large liquid-air interfaces.

Anti-adsorption and Anti-aggregation Agents

- ▶ Techniques used to decrease (or prevent) adsorption and suppress aggregation.
- 1) For interface-induced aggregation:
- a) Use of surfactant: surfactants will adsorb at the interfaces → make the interface more hydrophilic
 - → Protein accumulation at the interface is suppressed and thereby aggregate formation.
 - The most commonly used surfactants for parenteral use are poly-sorbate 20, 80, and Poloxamer 188.
- b) Use of human serum albumin: also prevent adsorption.
 - Albumin is commonly avoided nowadays due to probability of transferring infections.

Anti-adsorption and Anti-aggregation Agents

- 2) For the aggregates that occur in the bulk: these are formed because of colloidal and/or conformational instability.
- a) Adding sugars: Glucose may perfectly act as a conformational stabilizer.
- **Selecting a proper pH and buffer medium for maximum stability.**
- Variation in pH of the medium can cause protein instability and aggregation.

Buffer Components

Buffer selection is an important part of the formulation process, because of the pH dependence of protein solubility and physical and chemical stability.

- ☐ Buffer systems regularly encountered in biotech formulations are:
- 1. Phosphate
- 2. Citrate and
- 3. Acetate

Buffer Components

The isoelectric point (pI)

- **Primary charge** of a protein becomes **zero**.
- At a solution **pH that is above the pI** the surface of the protein is predominantly **negatively charged** and like charged molecules will exhibit **repulsive forces**.
- ❖ At a solution **pH that is below the pI**, the surface of the protein is predominantly **positively charged** and **repulsion** between proteins occurs.
- * At the pI the negative and positive charges cancel, repulsive electrostatic forces are reduced and the attraction forces predominate. The attraction forces will cause aggregation and precipitation.
- ❖ The pI of most proteins is in the pH range of 4-6.

Buffer Components

pI: is the pH at a particular molecule carries no net electrical charges (overall charge).

- \Box Thus molecule is affected by **pH** of its surrounding environment and can become more positively or negatively charged due to the gain or loss, respectively, of (H⁺).
- ☐ Such molecules have minimum solubility in water or salt solutions at the pH that corresponds to their pI and often precipitate out of solution.

Preservatives and Antioxidants

- Antioxidant (Protection against oxidation):
- Methionine, cysteine, tryptophan, tyrosine, and histidine are amino acids that are readily oxidized.
- **Proteins** rich in these amino acids are liable to oxidative degradation.
- ▶ These changes can be **decreased** (or **prevented**) by:
- 1. Replacement of oxygen by inert gases (e.g. argon) in the vials helps to reduce oxidative stress.
- 2. Decrease the headspace in the vial (such as in pre-filled syringes) will decrease the amount of oxygen available and decrease the oxidative stress.
- 3. Addition of antioxidants such as methionine that competes with the methionine residues for oxidation.

Preservatives and Antioxidants

- Note: some antioxidant can act as an oxidant in certain condition that need to be consider.
- Ascorbic acid, for example, can act as an **oxidant** in the presence of a number of **heavy metals**.
- So, if ascorbic acid had to be used for any reason we need to add chelating agents such as EDTA to reduce the effect of heavy metal.

Preservatives and Antioxidants

Preservation:

- Certain proteins are formulated in containers designed for multiple injection schemes.
- ▶ After administering the first dose, contamination with microorganisms may occur.
- **Preservatives** must be added to minimize growth.
- **Common** antimicrobial agents include phenol, meta-cresol, benzyl alcohol, and chlorobutanol.
- Usually, these preservatives are present in concentrations that are bacteriostatic rather than bactericidal in nature.
- They can interact with the protein, which may compromise both the activity of the protein and the effectivity of the preservative.

Cryoprotectant

- ▶ Proteins in solution often do not meet the preferred stability requirements for industrially pharmaceutical products (>2 years), even when kept permanently under refrigerator conditions (cold chain).
- The abundant presence of water promotes chemical and physical degradation processes.
- ▶ Due to heat instability of biopharmaceuticals → freeze drying has become the gold standard drying process for dosages that need to be in dry state for maximum stability.
- Freeze drying includes removing of water by sublimation (from solid phase into vapor phase without passing in liquid phase).

Freeze Drying

Three stages can be discerned in the **freeze drying process**:

(1) A freezing step

The temperature of the product is reduced.

(2) The primary drying step

Crystallized and water not bound to protein/excipients is removed by sublimation. The temperature is - 40 °C and reduced pressures are used.

(3) The secondary drying step

Removal of water interacting with the protein and excipients. The temperature is rises gradually, e.g., from - 40 °C to 20 °C.

Freeze Drying

Solution

Temperature Time Pressure

Powder

Freeze Drying

Example of freeze-drying protocol for systems with crystallizing water. Abbreviations: T, temperature; P, pressure.

Cryoprotectant

- During freezing stage, ice crystal may form and grow causing structural changes and protein instability.
- Cryoprotectants are excipients that protect a protein during freezing or in the frozen state (mainly sugars: sucrose, trehalose and sugar alcohols: mannitol, sorbitol).
- These work by increasing the solute concentration and lower the melting point (keep water as liquid as possible).
- This will prevent rapid ice formation which is the cause of structural changes.
- So cryoprotectants keep the structure integrity during freezing stage.

