AL MUSTAQBAL UNIVERSITY

!I tlllll
Do

L

DEPARTMENT OF CYBER SECURITY

SUBJECT:
SEARCHING AND SORTING ALGORITHMS
CLASS:
SECOND
LECTURER:
ASST. PROF. DR. ALI KADHUM AL-QURABY

LECTURE: (1)
INTRODUCTION

&,

NgnSITY
\»‘\

“\\NTY Dey Py,
N> &

Department of Cyber Security
Lecturer Name
Searching And Sorting Algorithms — Lecture (1)

Second Stage Asst. Prof. Ali Kadhum Al-Quraby

There are basically two aspects of computer programming. One is data

organization also commonly called as data structures. Till now we have seen about

data structures and the techniques and algorithms used to access them. The other

part of computer programming involves choosing the appropriate algorithm to

solve the problem. Data structures and algorithms are linked each other. After

developing programming techniques to represent information, it is logical to
proceed to manipulate it. This lecture introduces this important aspect of problem

solving.

INTRODUCTION TO SEARCHING AND SORTING ALGORITHMS
oo (K& Bus due)ylgsdl i dseBy il ylgadl e OB po Luwlaal US) o] dun)ylgs piad
L e ol I JEBY) e s 1o alapg @l Badd d3gasmn § dde (e ol gl

<y Find & Replace duols- e Sy (@lg dolall o guaill Ol y=e §)5 LS lolad ¢ yad J=1o

Lo 85 W &) Boyer-Moore Searching (s Gow dum)lss pddeind Al @l el el o

9,> de goze gl 36 5 13Led 3T €65 po s Liad Sl el Jlome 3 ©baylg3d1 Eal (30
@ Ol g godl e pud Lo Bole §5Ca9,51 odg Tud (& LI auex Slaml Wi
Olxisaially pulsdlly ol OByxa (3 bogas BaS wlaulas g4l ligs prefix searching
Lol i) U8 S o T @dga) GliulS e daa)ylgaell oda pusind (4!

sd el alm pusiad Ol lesdl o y3T g Aligd il oUyS3 b (e el dpaj)lgs paias Y
G o d0yd DL 5 51 4 e Eomdl dujlssdl podl Cus cdis G S Gl padll oo
A5Mo| elasl Lo Sgiz ad HUS wis Office Word 9l dez il lis Google Jai LS Lol cdils Ll
Soundex Searching Wyl ;9 3yl (3 guall 039l e @l ylsddl oda (el ety

Glae 283 3929 e Eoell das o Coy Bl)lg3 pasuind Cilwg md)l CHlobaad (1aid 1o yud
2355 S e b Ll dased 0555 28193l Ly delsd Ol lasg cdsamd syl Calall bl usY

Page |2

Q}3@\\;\\1 Y DEpy, ”,
&

Department of Cyber Security

NgnSITY
\»‘\

Searching And Sorting Algorithms — Lecture (1)

Lecturer Name
Second Stage

Asst. Prof. Ali Kadhum Al-Quraby

Aaslll Guds (§ agdlys ode (58 Comdl (PGl Sl ylos dorgd Eo ¢ JaadYl Hlidg T Liday 9 9Saun

Jie dalises eualan Lo doind (6531 il yles Lt s (o9 gy pUall dyomds &y pdsciady

Multiple pattern searching & &lwj;lgsdl e §eidl 1in Lowd 9 «$y>1 g0l Bucy Hash Table

Olylgsedloda Jio puseind (3l Olwg Adll Globias (e dodall Sl g cola))l 2! ol 0929

. ClamAV Ui

Searching is an operation or a technique that helps finds the place of a given

element or value in the list. Any search is said to be successful or unsuccessful
depending upon whether the element that is being searched is found or not. Some

of the standard searching technique that is being followed in data structure is listed
below:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure.

It is a way in which the elements are organized systematically for some purpose. For
example, a dictionary in which words is arranged in alphabetical order and

telephone director in which the subscriber names are listed in alphabetical order.

There are many sorting techniques out of which we study the following.
. Bubble sort

. Quick sort

. Selection sort and

. Heap sort

There are two types of sorting techniques

Page |3

%@\\mv DEpy, e
5 .
& Department of Cyber Security

Lecturer Name
Searching And Sorting Algorithms — Lecture (1)

NgnSITY
\»‘\
Sy
0 39371103

Second Stage Asst. Prof. Ali Kadhum Al-Quraby

@,
)

1. Internal sorting

2. External sorting

If all the elements to be sorted are present in the main memory, then such sorting

is called internal sorting on the other hand, if some of the elements to be sorted

are kept on the secondary storage, it is called external sorting. Here we study only

internal sorting techniques.

1. LINEAR SEARCH:

This is the simplest of all searching techniques. In this technique, an ordered or
unordered list will be searched one by one from the beginning until the desired
element is found. If the desired element is found in the list, then the search is

successful otherwise unsuccessful.

Suppose there are “n” elements organized sequentially on a List. The number of
comparisons required to retrieve an element from the list, purely depends on
where the element is stored in the list. If it is the first element, one comparison will
do; if it is second element two comparisons are necessary and so on. On an average
you need [(n+1)/2] comparisons to search an element. If search is not successful,

o _n

you would need “n” comparisons.

The time complexity of linear search is O(n).

Department of Cyber Security
Lecturer Name

Searching And Sorting Algorithms — Lecture (1)

Second Stage Asst. Prof. Ali Kadhum Al-Quraby

Algorithm LinearSearch (Array A, Value x)
Step 1: Setito 1
Step 2: if 1 > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Setitoi+1
Step 5: Go to Step 2
Step 6: Print Element x Found at index 1 and go to step 8
Step 7: Print element not found
Step 8: Exit

Here is a simple C++ program that demonstrates sequential search (also known as
linear search). This search algorithm checks each element in a list (or array) one by
one to find the target value.

Sequential Search Example

#include <iostream>
using namespace std;

// Function for sequential search
int sequentialsearch(int arr[], int size, int target) {
for (int i = @; 1 < size; i++) {
if (arr[i] == target) {
return 1; // Return index if target is found
}
}

return -1; // Return -1 if target is not found

main() {
int arr[] = {10, 20, 30, 48, 50}; // Example array
int target;

cout << "Enter the value to search: ";
cin >> target;

int size = sizeof(arr) / sizeof(arr[e]); // Calculate the size of the array
int result = sequentialSearch(arr, size, target);

if (result != -1) {

cout << "Element found at index: " << result << endl;
} else {

cout << "Element not found in the array."” << endl;

}

return @;

o SORTY DEpg,
& % :
& Department of Cyber Security

Lecturer Name
Searching And Sorting Algorithms — Lecture (1)

Second Stage

NgnSITY
\»‘\
Sy
0 39371103

@,
)

Asst. Prof. Ali Kadhum Al-Quraby

Example 1:

Let us illustrate linear search on the following 9 elements:

Index 0 1
Elements | -15| -6

Searching different elements is as follows:

1. Searching for x = 7, Search successful, data found at 3rd position.

2. Searching for x = 82, Search successful, data found at 7th position.

3. Searching for x = 42, Search un-successful, data not found.

Example 2: Let us take an example of an array A[7]={5,2,1,6,3,7,8}. Array A has 7
items. Let us assume we are looking for 7 in the array. Targeted item=7.

Here, we have Index 0 1 2 3 4

Element 5 2 1 6
A[7]={5I2I1I6I3I7I8}

3

At first, When i=0 (A[0]=5; X=7) not matched
i++ now, i=1 (A[1]=2; X=7) not matched
i++ now, i=2 (A[2])=1; X=7) not matched

i++ when, i=5 (A[5]=7; X=7) Match Found
Hence, Element X=7 found at index 5.

Department of Cyber Security
Lecturer Name

Searching And Sorting Algorithms — Lecture (1)

Second Stage Asst. Prof. Ali Kadhum Al-Quraby

A RECURSIVE PROGRAM FOR LINEAR SEARCH

Here is a recursive C++ program to perform linear (sequential) search:

Recursive Linear Search

#include <iostream>

using namespace std;

// Recursive function for linear search
int recursivelinearSearch(int arr[], int size, int target, int index = @) {
// Base case: if index exceeds the size of the array, target is not found
if (index »= size) {
return -1;
¥
// Check if the current element matches the target
if (arr[index] == target) {
return index;
I
J// Recursive call to check the next element
return recursivelinearSearch(arr, size, target, index + 1);

main() {

int arr[] = {1©, 20, 30, 48, 50}; // Example arraﬂ
int target;

cout << "Enter the wvalue to search: ";
cin »>» target;

int size = sizeof(arr) / sizeof(arr[@]); // Calculate the size of the array
int result = recursivelinearSearch(arr, size, target);

if (result != -1) {

cout << "Element found at index: " << result << endl;
T else {

cout << "Element not found in the array." << endl;

