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There are basically two aspects of computer programming. One is data

organization also commonly called as data structures. Till now we have seen about

data structures and the techniques and algorithms used to access them. The other

part of computer programming involves choosing the appropriate algorithm to

solve the problem. Data structures and algorithms are linked each other. After

developing programming techniques to represent information, it is logical to
proceed to manipulate it. This lecture introduces this important aspect of problem

solving.
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Searching is an operation or a technique that helps finds the place of a given

element or value in the list. Any search is said to be successful or unsuccessful
depending upon whether the element that is being searched is found or not. Some

of the standard searching technique that is being followed in data structure is listed
below:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure.

It is a way in which the elements are organized systematically for some purpose. For
example, a dictionary in which words is arranged in alphabetical order and

telephone director in which the subscriber names are listed in alphabetical order.

There are many sorting techniques out of which we study the following.
. Bubble sort

. Quick sort

. Selection sort and

. Heap sort

There are two types of sorting techniques
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1. Internal sorting

2. External sorting

If all the elements to be sorted are present in the main memory, then such sorting

is called internal sorting on the other hand, if some of the elements to be sorted

are kept on the secondary storage, it is called external sorting. Here we study only

internal sorting techniques.

1. LINEAR SEARCH:

This is the simplest of all searching techniques. In this technique, an ordered or
unordered list will be searched one by one from the beginning until the desired
element is found. If the desired element is found in the list, then the search is

successful otherwise unsuccessful.

Suppose there are “n” elements organized sequentially on a List. The number of
comparisons required to retrieve an element from the list, purely depends on
where the element is stored in the list. If it is the first element, one comparison will
do; if it is second element two comparisons are necessary and so on. On an average
you need [(n+1)/2] comparisons to search an element. If search is not successful,

o _n

you would need “n” comparisons.

The time complexity of linear search is O(n).
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Algorithm LinearSearch ( Array A, Value x)
Step 1: Setito 1
Step 2: if 1 > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Setitoi+1
Step 5: Go to Step 2
Step 6: Print Element x Found at index 1 and go to step 8
Step 7: Print element not found
Step 8: Exit

Here is a simple C++ program that demonstrates sequential search (also known as
linear search). This search algorithm checks each element in a list (or array) one by
one to find the target value.

Sequential Search Example

#include <iostream>
using namespace std;

// Function for sequential search
int sequentialsearch(int arr[], int size, int target) {
for (int i = @; 1 < size; i++) {
if (arr[i] == target) {
return 1; // Return index if target is found
}
}

return -1; // Return -1 if target is not found

main() {
int arr[] = {10, 20, 30, 48, 50}; // Example array
int target;

cout << "Enter the value to search: ";
cin >> target;

int size = sizeof(arr) / sizeof(arr[e]); // Calculate the size of the array
int result = sequentialSearch(arr, size, target);

if (result != -1) {

cout << "Element found at index: " << result << endl;
} else {

cout << "Element not found in the array."” << endl;

}

return @;
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Example 1:

Let us illustrate linear search on the following 9 elements:

Index 0 1
Elements | -15| -6

Searching different elements is as follows:

1. Searching for x = 7, Search successful, data found at 3rd position.

2. Searching for x = 82, Search successful, data found at 7th position.

3. Searching for x = 42, Search un-successful, data not found.

Example 2: Let us take an example of an array A[7]={5,2,1,6,3,7,8}. Array A has 7
items. Let us assume we are looking for 7 in the array. Targeted item=7.

Here, we have Index 0 1 2 3 4

Element 5 2 1 6
A[7]={5I2I1I6I3I7I8}

3

At first, When i=0 (A[0]=5; X=7) not matched
i++ now, i=1 (A[1]=2; X=7) not matched
i++ now, i=2 (A[2])=1; X=7) not matched

i++ when, i=5 (A[5]=7; X=7) Match Found
Hence, Element X=7 found at index 5.
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A RECURSIVE PROGRAM FOR LINEAR SEARCH

Here is a recursive C++ program to perform linear (sequential) search:

Recursive Linear Search

#include <iostream>

using namespace std;

// Recursive function for linear search
int recursivelinearSearch(int arr[], int size, int target, int index = @) {
// Base case: if index exceeds the size of the array, target is not found
if (index »= size) {
return -1;
¥
// Check if the current element matches the target
if (arr[index] == target) {
return index;
I
J// Recursive call to check the next element
return recursivelinearSearch(arr, size, target, index + 1);

main() {

int arr[] = {1©, 20, 30, 48, 50}; // Example arraﬂ
int target;

cout << "Enter the wvalue to search: ";
cin »>» target;

int size = sizeof(arr) / sizeof(arr[@]); // Calculate the size of the array
int result = recursivelinearSearch(arr, size, target);

if (result != -1) {

cout << "Element found at index: " << result << endl;
T else {

cout << "Element not found in the array." << endl;




