AL MUSTAQBAL UNIVERSITY

!I tlllll
Do

L

DEPARTMENT OF CYBER SECURITY

SUBJECT:
SEARCHING AND SORTING ALGORITHMS
CLASS:
SECOND
LECTURER:
ASST. PROF. DR. ALI KADHUM AL-QURABY

LECTURE: (2)
SORTING METHODS




“ .
Department of Cyber Securit
P y y Lecturer Name

Searching And Sorting Algorithms — Lecture (2)

%0 3931109

Asst. Prof. Ali Kadhum Al-Quraby
Second Stage

<+ PROGRAM FOR SELECTION SORT

Selection Sort Example

Us1ng namespace sTa,

{// Function to perform Selection Sort
void selectionSort(int arr[], int n) {
for (int i =@; 1 < n - 1; i++) {
int minIndex = i; // Assume the first element is the minimum

// Find the minimum element in the remaining array
for {(int j =1 + 1; j < n; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;

/{ Swap the found minimum element with the first element
swap{arr[i], arr[minIndex]);

{/f Function to print the array
void printhArray(int arr[], int n) {
for (int i = @; 1 < n; i++)

cout << arr[i] <« H
cout << endl;

ff Main function
int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof(arr[8]);

cout << "Unsorted array: “;
printArray(arr, n);

selectionSort{arr, n);

cout << "Sorted array: ";
printArray(arr, n);

return 8;




“ .
Department of Cyber Securit
P y y Lecturer Name

Searching And Sorting Algorithms — Lecture (2)

%0 3931109

Asst. Prof. Ali Kadhum Al-Quraby

%

Second Stage

* RECURSIVE PROGRAM FOR SELECTION SORT

#include <iostream>

using namespace std;

// Function to find the index of the minimum element in the array
int findMinIndex(int arr[], int start, int n) {
int minIndex = start;
for (int i = start + 1; 1 < n; i+4) {
if (arr[i] < arr[minIndex])
minIndex = i;
¥

return minIndex;

f/ Recursive function for Selection Sort
void recursiveSelectionSort(int arr[], int start, int n) {
// Base case: If start index reachesz the last element, return
if (start »=n - 1)
return;

J// Find the minimum element in the remaining array
int minIndex = findMinIndex({arr, start, n};

// Swap the found minimum element with the first element of the unsorted part
swap (arr[start], arr[minIndex]);

// Recursively call the function for the remaining unsorted array
recursiveSelectionSort(arr, start + 1, n);

// Function to print the array
void printArray(int arr[], int n) {
for (int 1 = @; 1 < n; i)
cout << arr[i] << " ";
cout << endl;

J// Main function

int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof(arr[e]);
cout << "Unsorted array: ";
printArray(arr, n);

recursiveselectionSort(arr, @, n);

cout << "Sorted array: ";
printArray(arr, n};

return 8;




Department of Cyber Security Lecturer Name

Searching And Sorting Algorithms — Lecture (2)

Asst. Prof. Ali Kadhum Al-Quraby
Second Stage

Quick Sort

The quick sort was invented in 1960. It was one of the first most efficient sorting
algorithms. It is an example of a class of algorithms that work by “divide and
conquer” technique. The quick sort algorithm partitions the original array by
rearranging it into two groups. The first group contains those elements less than
some arbitrary chosen value taken from the set, and the second group contains
those elements greater than or equal to the chosen value. The chosen value is
known as the pivot element. Once the array has been rearranged in this way with
respect to the pivot, the same partitioning procedure is recursively applied to each
of the two subsets. When all the subsets have been partitioned and rearranged, the
original array is sorted. The function partition() makes use of two pointers up and

down which are moved toward each other in the following fashion:

Repeatedly increase the pointer ‘up’ until afup] >= pivot.
Repeatedly decrease the pointer ‘down’ until a[down] <= pivot.
If down > up, interchange a[down] with a[up]

Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer, If
‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and place
pivot element in ‘down’ pointer position.




Department of Cyber Security Lecturer Name

Searching And Sorting Algorithms — Lecture (2)

2%
) 3931100

Asst. Prof. Ali Kadhum Al-Quraby

%

Second Stage

The program uses a recursive function quicksort(). The algorithm of quick sort function
sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will
be satisfied only when the array is completely sorted.

Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it
calls the partition function to find the proper position j of the element x[low]
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1],

and x[j+1], x[j+2], . . . x[high].

It calls itself recursively to sort the left sub-array x[low], x[low+1],

x[j-1] between positions low and j-1 (where j is returned by the partition
function).

It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high]
between positions j+1 and high.

The time complexity of quick sort algorithm is of O(n log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search
of an element larger than pivot. Move the ‘down’ pointer from right to left in search of
an element smaller than pivot. If such elements are found, the elements are swapped.

This process continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer
crosses ‘down’ pointer, the position for pivot is found and interchange pivot and
element at ‘down’ position.

Let us consider the following example with 13 elements to analyze quick sort:|




Department of Cyber Security Lecturer Name

0 39371103

Searching And Sorting Algorithms — Lecture (2)
Asst. Prof. Ali Kadhum Al-Quraby
Second Stage

5

Remarks

swap up &
down

swap up &
down

ap pivot
down

Iswap pivot
& down

lswap pivot
& down

swap up &
down

lswap pivet
& down

Iswap pivot
& down




Department of Cyber Security Lecturer Name

Searching And Sorting Algorithms — Lecture (2)
Asst. Prof. Ali Kadhum Al-Quraby
Second Stage

%0 3931100

A
%,

|swap up &
D

|swap pivot
B down

|swap pivot
& down

|swap up &
down

[swap pivot
B down

[swap pivot
B down




“ .
Department of Cyber Securit
P y y Lecturer Name

Searching And Sorting Algorithms — Lecture (2)

%0 3931109

Asst. Prof. Ali Kadhum Al-Quraby

%

Second Stage

<+ RECURSIVE PROGRAM FOR QUICK SORT:

#include <iostream:>

using namespace std;

// Function to partition the array
int partition{int arr[], int low, int high) {
int pivot = arr[high]; // Choosing the last element as the piwvot

int 1 = low - 1; // Pointer for the smaller element

for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
it+;
swap(arr[i], arr[j]}; // Swap elements if they are smaller than the pivot

swap(arr[i + 1], arr[high]); // Move pivot to the correct position
return 1 + 1; // Return pivot index

// Recursive Quick Sort function
void quickSort({int arr[], int low, int high) {
if (low < high) {
int pivotIndex = partition(arr, low, high); // Find the pivot position

quickSort(arr, low, pivotIndex - 1); // Recursively sort left part
quickSort(arr, pivotIndex + 1, high); // Recursively sort right part

// Function to print the array
void printArray(int arr[], int n) {
for (int 1 = @; 1 < n; i++)
cout << arr[i] << " ";
cout << endl;

// Main function

int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof(arr[@]);
cout << "Unsorted array: ";
printarray{arr, n);

quickSort{arr, @, n - 1);

cout << "Sorted array: ";
printarray{arr, n);

return 8;




