

Al-Mustaqbal University / College of Engineering & Technology Computer Technique Engineering Department Third Class Mathmatic II/ Code (MU0222002)

Lecturer Dr. Abdullah Jabar Hussain 2nd term – Lecture No.2 & Lecture Name (Complex numbers)

Complex numbers

The Complex numbers

<u>Def:</u> The order pair_z=(x, y) where x and y are real numbers is called the complex number.

Notations:

- 1. The complex number (0,y) is called pure imaginary number.
- 2. The real number x is called the real part of z and The real number y is called the imaginary part of z.
- 3. We say that the complex numbers (x_1, y_1) and (x_2, y_2) are equal if and only if $x_1 = x_2$ and $y_1 = y_2$.
- 4. The add ion and the multiplication are defined as: $z_1 + z_{2=}(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

$$z_1. z_{2=}(x_1, y_1). (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

1. If $i = \sqrt{-1}$ then we can write the complex number z = x+iy and $z_1. z_{2=}(x_1, y_1). (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$ $z_1 + z_{2-}(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$

Examples:

1.
$$(2+3i)+(1+4i)=(2+1)+(3+4)i=3+7i$$

2.
$$(1-i)\cdot(2+3i)=(1\times 2-(-1\times 3)+(1\times 3+(2\times (-1))i=5+i)$$

3.
$$i^3 = (i^2) i = -i$$

Algebraic properties:

1. The commutative law: $z_1 + z_2 = z_2 + z_1$ and $z_1 \cdot z_2 = z_2 \cdot z_1$ $\forall z_1, z_2 \in \mathbb{C}$

2.
$$z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$$

 $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$

4. The additive identity is
$$0=0+0i$$
 then $\forall z \in \mathbb{C}$, $z+0=0+z=z$

5. The multiple identity is
$$1=1+0i$$
 then $\forall z \in \mathbb{C}$, $z \cdot 1=1 \cdot z=z$

6. The additive inverse
$$\forall z \in \mathcal{L} \exists -z = -x - iy$$
 st $z+(-z)=-z+z=0$

7. The multiplicative inverse
$$\forall z \in \mathcal{C} \exists z^{-1}$$
 st. $z \cdot z^{-1} = z^{-1} \cdot z = 1$

8. the conjugate of the complex number z=x+iy is $z^-=x-iy$

Examples:

$$1.(6+5i)-(4-3i)+(2+7i)=4+15i$$

$$3.(\sqrt{2}-i)-i(1-\sqrt{2}i)=(\sqrt{2}-i)-(i+\sqrt{2})=-2i$$

4The conjugate of 3-7i= 3+7i

6. find the inverse of -2+3i

$$z^{-1} = \frac{1}{z} = \frac{1}{-2+3i} = \frac{1}{-2+3i} \times \frac{-2-3i}{-2-3i} = \frac{-2-3i}{13} = \frac{-2}{13} + \frac{-3i}{13}$$

Graphical representation of the complex number:

Every complex number z=x+ iy corresponding one point in the plane XY For example (0,0) corresponds to the complex number z=0+0i and the number z represents the distance from (0,0) to (x,y) therefore the plane is called the complex plane ,X is called the real axis and Y is called the imaginary axis.

The absolute value of the complex number:

The absolute value of the complex number z=x+i y is defined as fellows:

$$|z| = \sqrt{x^2 + y^2}$$

Note:

- 1. The number z represents the distains between the origin and (x, y)
- 2. If $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ then the distance between them is

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$3.|z_1.z_2| = |z_1|.|z_2|$$

4.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 $z_2 \neq 0$

Example:

$$z=2-3i$$
 then

$$|z| = \sqrt{x^2 + y^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}$$

polar form the complex number:

Let r, θ are the polar coordinates corresponding to (x, y) that represents z

$$x=r\cos\theta$$
 , $y=r\sin\theta$

$$z=r(\cos\theta+i\sin\theta)=re^{i\theta}$$

s.t.
$$r = |z| = \sqrt{x^2 + y^2}$$
 and θ it is the angle of the complex number z

, it is called (argument)andcan be write
$$arg(z) = tan^{-1} \left(\frac{y}{x}\right)$$

Examples:

1. write z=1+i by the polar form :

sol:

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta = \tan^{-1}\left(\frac{1}{1}\right) = \tan^{-1}(1) = \frac{\pi}{4}$$
$$z = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = e^{i\frac{\pi}{4}}$$

1.
$$z = i$$

$$r = 1$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{1}{0}\right) = \tan^{-1}(\infty) = \frac{\pi}{2}$$

$$z = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = e^{i\frac{\pi}{2}}$$

seince $\cos \theta$ and $\sin \theta$ are pirodic in 2π then $argz = \theta + 2k\pi$

if
$$k=0$$
, $argz=\theta$, $-\pi < \theta < \pi$

notations:

1.
$$arg(z_1 + z_2) = argz_1 + argz_1$$

2. let
$$z_1 = r(\cos\theta + i\sin\theta)$$
 , $z_2 = p(\cos\phi + i\sin\phi)$

$$z_1 z_2$$

= $rp(\cos\theta + i\sin\theta) \cdot (\cos\phi + i\sin\phi) = rp(\cos\theta\cos\phi + i\sin\theta\sin\phi) = rp(\cos(\theta)\cos\phi)$

$$arg(z_1 \cdot z_2) = \theta + \emptyset$$

1.
$$\arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2$$

2. for all the integer number $n z^n = r^n(\cos n \theta + i\sin n\theta) = r^n(\cos \theta + i\sin \theta)^n$

Example: represent the following complex numbers in the standard form:

$$z=e^{i\theta} \rightarrow r=1 \text{ and } \theta=\frac{\pi}{2}$$

$$X=r\cos\theta = 1 * \cos\frac{\pi}{2} = 0$$
 $y = r\sin\theta = 1.\sin\frac{\pi}{2} = 1 * 1 = 1$

$$Z=x+iy=0+i$$
.

The complex function:

Let S be non empty set of the points in the complex plane if $\forall z \in S \exists w$

s.t. w=f(z). i.e. $f: S \to C$, S is called domain f and f(z) is called the range.

We can write f(z) by the following:

w=f(z)=u(x,y)+iv(x,y), u, v are real functions.

Example:

1.
$$f(z)=x^2 + 2y - i2xy^3$$
, $u(x, y)=x^2 + 2y$, $v(x, y) = -i2xy^3$

2. $f(z)=z^2$ write f(z) by u and v.

sol:
$$z=x+i y \rightarrow f(z)=(x+iy^2)$$

$$f(z) = x^2 + 2ixy - y^2 = x^2 + y^2 - 2ixy$$

$$u(x, y) = x^2 + y^2$$
 , $v(x, y) = -2ixy$