

Principles of Cyber Security

Lecture 10: Traditional Ciphers_IV

Objectives

10.1 Describe Substitution Ciphers algorithms (Caesar Cipher).

Caesar Cipher

The Caesar Cipher is a monoalphabetic cipher in which each letter is replaced in the encryption by another letter a fixed "distance" away in the alphabet.

- For example, A is replaced by C, B by D, ..., Y by A, Z by B, etc. What is the key?
 - What is the size of the keyspace?

Substitution Ciphers

Caesar Cipher

This is an example of Caesar Cipher in which each letter in the alphabet is rotated by three letters as shown.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

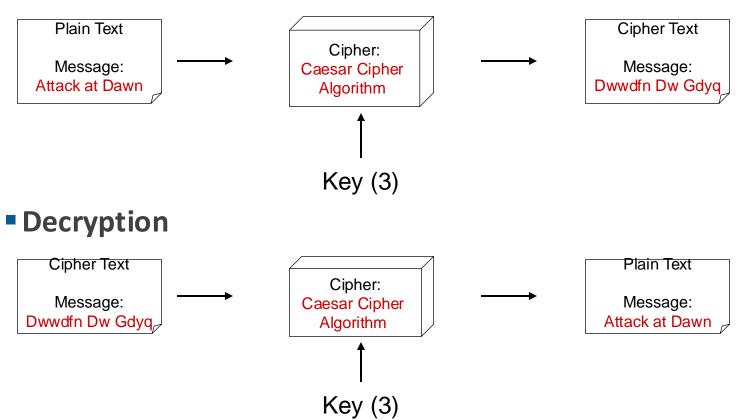
DEFGHIJKLMNOPQRSTUVWXYZABC

Substitution Ciphers

Caesar Cipher

Let us try to encrypt the message

**Attack at Dawn


Assignment: Each student will exchange a secret message with his/her closest neighbor about some other person in the class and the neighbor will decipher it.

Substitution Ciphers

Caesar Cipher

Encryption

How many different keys are possible?

Simple Substitution

- A simple substitution cipher is an injection (1-1 mapping) of the alphabet into itself or another alphabet. What is the key?
- A simple substitution is breakable; we could try all k!
 mappings from the plaintext to ciphertext alphabets.

 That's usually not necessary.
- Redundancies in the plaintext (letter frequencies, digrams, etc.) are reflected in the ciphertext.
 - Not all substitution ciphers are simple substitution ciphers.

Thank you

