

College of Engineering & Technology

Biomedical Engineering Department

Subject Name: Mathematics

2nd Class, Second Semester

Academic Year: 2024-2025

Lecturer: Dr. Ameer Najah

Asst. lec. Eman Yasir

Lecture No.: 2

Lecture Title: [Series]

Series

Infinite Series

Infinite series are sequences of a special kind: those in which the n^{th} -term is the sum of the first n terms of a related sequence.

Example

Suppose that we start with the sequence

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \dots \Rightarrow a_1, a_2, a_3, a_4, \dots a_n$$

If we denote the above sequence as a_n , and the resultant sequence of the series as s_n , then

$$\begin{split} s_1 &= a_1 = 1\,,\\ s_2 &= a_1 + a_2 = 1 + \frac{1}{2} = \frac{3}{2}\,,\\ s_3 &= a_1 + a_2 + a_3 = 1 + \frac{1}{2} + \frac{1}{4} = \frac{7}{4}\,, \end{split}$$

as the first three terms of the sequence $\{s_n\}$.

Infinite series

When the sequence $\{s_n\}$ is formed in this way from a given sequence $\{a_n\}$ by the rule

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

the result is called an *Infinite Series*.

- ***** The number $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of the series.
- **.** Instead of $\{s_n\}$, we usually write $\sum_{n=1}^{\infty} a_n$ or simply $\sum a_n$.
- The series $\sum a_n$ is said to *converge* to a number L if and only if $L = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k$

in which case we call L the sum of the series and write

$$\sum_{n=1}^{\infty} a_n = L \qquad \text{or} \qquad a_1 + a_2 + \dots + a_n + \dots = L$$

If no such limit exists, the series is said to *diverge*.

Geometric series

Geometric Series

A series of the form

$$a + ar + ar^{2} + ar^{3} + ... + +ar^{n-1} + ...$$

is called a *Geometric Series*. The ratio of any term to the one before it is r.

$$r = \frac{ar}{r} = \frac{ar^2}{ar} = \frac{ar^3}{ar^2} = \frac{ar^n}{ar^{n-1}}$$

If |r| < 1 the series converges to a/(1-r), [sum of convergence].

If $|r| \ge 1$, the series diverges unless a = 0.

If a = 0, the series converges to 0.

Examples

Example

Determine whether each series converges or diverges. If it converges, find its sum.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$$
, (b) $\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$, (c) $\sum_{n=1}^{\infty} 2\left(\cos\frac{\pi}{3}\right)^n$, (d) $\sum_{n=0}^{\infty} \left(\tan\frac{\pi}{4}\right)^n$, (e) $\sum_{n=1}^{\infty} \frac{5(-1)^n}{4^n}$

Solution

(a) $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ To be solved as a geometric series, we should satisfy the following form: $a + ar + ar^2 + ar^3 + ... + ar^{n-1} + ...$

at
$$n = 0$$
, $a = \left(\frac{2}{3}\right)^{0} = 1$
at $n = 1$, $ar = \left(\frac{2}{3}\right)^{1} = \frac{2}{3}$
at $n = 2$, $ar^{2} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9}$
at $n = 3$, $ar^{3} = \left(\frac{2}{3}\right)^{3} = \frac{8}{27}$

If |r| < 1 the series converges to a/(1-r), [sum of convergence].

If $|r| \ge 1$, the series diverges unless a = 0.

If a = 0, the series converges to 0.

$$r = \frac{ar}{r} = \frac{ar^2}{ar} = \frac{ar^3}{ar^2} = \frac{ar^n}{ar^{n-1}} \dots = \frac{2}{3}$$
, so it is a **geometric series**.

Since $\left| r = \frac{2}{3} \right| < 1$, the geometric series is **convergent**.

The sum of convergence is
$$\frac{a}{1-r} = \frac{1}{\left(1-\frac{2}{3}\right)} = 3$$

Examples

In similar way for (b)
$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$
, (c) $\sum_{n=1}^{\infty} 2\left(\cos\frac{\pi}{3}\right)^n$, (d) $\sum_{n=0}^{\infty} \left(\tan\frac{\pi}{4}\right)^n$, (e) $\sum_{n=1}^{\infty} \frac{5(-1)^n}{4^n}$

- **(b)** Since the series is a geometric series with $r = \frac{3}{2} > 1$, so the series is divergent.
- (c) $\cos \pi/3 = 1/2$. This is a geometric series with first term $a_1 = 1$ and the ratio r = 1/2; so the series converges and its sum is $1/(1 \frac{1}{2}) = 2$.
- (d) $\tan \pi/4 = 1$. This is a geometric series with r = 1, so the series diverges.
- (e) This is a geometric series with first term $a_1 = -5/4$ and ratio r = -1/4. So the series converges and its sum is $\frac{-5/4}{1+(1/4)} = -1$.

1) The nth- Term Test

- If $\lim_{n\to\infty} a_n \neq 0$, or if $\lim_{n\to\infty} a_n$ fails to exist, then $\sum_{n=1}^{\infty} a_n$ diverges.
- If $\lim_{n\to\infty} a_n = 0$, then the test fails (inconclusive test) \longrightarrow Choose another test

Examples

$$\sum_{i=1}^{\infty} n^2 \qquad \text{diverges because } n^2 \to \infty,$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$
 diverges because $\frac{n+1}{n} \to 1 \neq 0$,

$$\sum_{n=1}^{\infty} (-1)^{n+1}$$
 diverges because $\lim_{n\to\infty} (-1)^{n+1}$ does not exist,

$$\sum_{n=1}^{\infty} \frac{n}{2n+5}$$
 diverges because $\lim_{n\to\infty} \frac{n}{2n+5} = \frac{1}{2} \neq 0$,

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 can not be tested by the nth-term test for divergence because $\frac{1}{n} \to 0$.

2) The Integral Test

Let the function y = f(x), obtained by introducing the continuous variable x in place of the discrete variable n in the nth-term of the positive series $\sum_{n=0}^{\infty} a_n$, then

$$\int_{1}^{\infty} f(x)dx = \begin{cases} +\infty & Div. \\ -\infty & Div. \\ -\infty < c < \infty & Conv. \end{cases}$$

Example

Test the convergence of

(a)
$$\sum_{n=1}^{\infty} \frac{1}{e^n},$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

Solution

(a)
$$\int_{1}^{\infty} e^{-x} dx = -e^{-x} \Big|_{1}^{\infty} = -(e^{-\infty} - e^{-1}) = \frac{1}{e}$$

A special case of integral test is called (P - series):

(a)
$$\sum_{n=1}^{\infty} \frac{1}{e^n}$$
, (b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \longrightarrow \int_{1}^{\infty} x^{-p} dx$$

If $P \le 1 \to diverge$ (Harmonic series at p = 1)
If $P > 1 \to converge$

(Conv.)

(b)
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{2}^{\infty} \frac{1/x}{(\ln x)^{2}} dx = \frac{-1}{\ln x} \Big|_{2}^{\infty} = \frac{-1}{\infty} + \frac{1}{\ln 2} = \frac{1}{\ln 2}$$
 (Conv.)

3) The Ratio Test

Let $\sum a_n$ be a series with positive terms, and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho$$

Then

- The series converges if $\rho < 1$,
- The series diverges if $\rho > 1$,
- **The series may converge or it may diverge if** $\rho = 1$. (Test fails) \Rightarrow (inconclusive test)

The Ratio Test is often effective when the terms of the series contain factorials of expressions involving n or expressions raised to a power involving n.

- The series converges if $\rho < 1$,
- The series diverges if $\rho > 1$,
- * The series may converge or it may diverge if $\rho = 1$. (Test fails) \implies (inconclusive test)

Example

Test the following series for convergence or divergence, using the Ratio Test.

(a)
$$\sum_{n=1}^{\infty} \frac{n! \, n!}{(2n)!}$$
, (b) $\sum_{n=1}^{\infty} \frac{4^n \, n! \, n!}{(2n)!}$, (c) $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$, (d) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$, (e) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$

Solution

(a) If
$$a_n = \frac{n! \, n!}{(2n)!}$$
, then $a_{n+1} = \frac{(n+1)! (n+1)!}{(2n+2)!}$ and
$$a_{n+1} = \frac{(n+1)! (n+1)!}{(2n+2)!} = \frac{(n+1)! (n+1)! = (n+1)! (n+1)! = ($$

$$5! = 5 \times 4! = 5 \times 4 \times 3! = 5 \times 4 \times 3 \times 2! = \cdots$$

 $(n+1)! = (n+1) \, n! = (n+1) \, n \, (n-1) \, ! = \dots$
 $(n-1)! = (n-1) \, (n-2)! = (n-1) \, (n-2) \, (n-3) \, ! = \cdots$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!(n+1)!(2n)!}{n!n!(2n+2)(2n+1)(2n)!} = \frac{(n+1)(n+1)}{(2n+2)(2n+1)}$$

$$= \frac{n+1}{4n+2} \implies \lim_{n \to \infty} \frac{a_{n+1}}{a} \implies \frac{1}{4} < 1 \qquad (Conv.)$$

(b) If
$$a_n = \frac{4^n n! n!}{(2n)!}$$
, then $a_{n+1} = \frac{4^{n+1} (n+1)! (n+1)!}{(2n+2)!}$ and
$$(n+1)! = (n+1) n! = (n+1) n (n-1)! = \dots$$

$$(n-1)! = (n-1) (n-2)! = (n-1) (n-2)! = \dots$$

$$5! = 5 \times 4! = 5 \times 4 \times 3! = 5 \times 4 \times 3 \times 2! = \cdots$$

 $(n+1)! = (n+1) \, n! = (n+1) \, n \, (n-1) \, ! = \dots$
 $(n-1)! = (n-1) \, (n-2)! = (n-1) \, (n-2) \, (n-3) \, ! = \cdots$

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)(2n+1)(2n)!} \times \frac{(2n)!}{4^n n! n!} = \frac{4(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{2(n+1)}{2n+1} \longrightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{a_{n+1}}{2n+1}$$

- The series converges if ρ<1,
 (Test fails)
 The series diverges if ρ>1,
 The series may converge or it may diverge if ρ=1. (Test fails) → (inconclusive test)

(c) If
$$a_n = \frac{2^n + 5}{3^n}$$
, then $a_{n+1} = \frac{2^{n+1} + 5}{3^{n+1}}$ and

$$\frac{a_{n+1}}{a_n} = \frac{(2^{n+1} + 5)/3^{n+1}}{(2^n + 5)/3^n} = \frac{1}{3} \times \frac{2^{n+1} + 5}{2^n + 5} \qquad \times \frac{2^{-n}}{2^{-n}} = \frac{1}{3} \times \left(\frac{2 + 5 \times 2^{-n}}{1 + 5 \times 2^{-n}}\right) \implies \boxed{\lim_{n \to \infty} \frac{a_{n+1}}{a_n}}$$

$$\rightarrow \frac{1}{3} \times \frac{2}{1} = \frac{2}{3} < 1 \qquad (Conv.)$$

- The series converges if $\rho < 1$,
- The series diverges if $\rho > 1$,
- The series may converge or it may diverge if $\rho = 1$. (Test fails) \implies (inconclusive test)

(d) If
$$a_n = \frac{n!}{3^n}$$
, then $a_{n+1} = \frac{(n+1)!}{3^{n+1}}$ and

$$\frac{a_{n+1}}{a} = \frac{(n+1)!}{3^{n+1}} \times \frac{3^n}{n!} = \frac{n+1}{3} \implies \lim_{n \to \infty} \frac{a_{n+1}}{a} \to \infty > 1$$
 (Div.)

(e) If
$$a_n = \frac{n^n}{n!}$$
, then $a_{n+1} = \frac{(n+1)^{n+1}}{(n+1)!}$ and

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \times \frac{n!}{n^n} = \frac{(n+1)^n (n+1) n!}{(n+1) n! n^n}$$

$$=\frac{(n+1)^n}{n^n}=\left(\frac{n+1}{n}\right)^n=\left(1+\frac{1}{n}\right)^n \longrightarrow \lim_{n\to\infty}\frac{a_{n+1}}{a_n} \longrightarrow e^1=2.7>1 \qquad \text{(Div.)}$$

Use the property

$$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x \qquad \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e^1$$

4) The nth Root Test

$$\sqrt[n]{a_n} \to \rho$$

Then

- The series converges if $\rho < 1$.
- The series diverges if $\rho > 1$.
- The test is not conclusive if $\rho = 1$.

Example

Test the convergence of the following series using the nth Root Test.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$, (c) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$, (d) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$, (e) $\sum_{n=1}^{\infty} \left(\frac{2n}{n+1}\right)^n$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2}$$
(c)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$$
(d)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
(e)
$$\sum_{n=1}^{\infty} \left(\frac{2n}{n+1}\right)^n$$
(a)
$$\sqrt[n]{\frac{1}{n^n}} = \frac{1}{n}$$
(b)
$$\sqrt[n]{\frac{1}{n^n}} = \frac{1}{n}$$
(c)
$$\sum_{n=1}^{\infty} \rho \rightarrow 0 < 1$$
(d)
$$\sqrt[n]{\frac{2^n}{n^2}} = \frac{2}{\sqrt[n]{n^2}}$$
(e)
$$\sum_{n=1}^{\infty} \rho \rightarrow 0 < 1$$
(for example of the property o

H.W.

Find the sum of the following series

$$\sum_{n=1}^{\infty} \frac{7}{4^n}$$

$$\sum_{n=0}^{\infty} \left(\frac{5}{2^n} + \frac{1}{3^n} \right)$$

$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{(-1)^n}{5^n} \right)$$

$$\sum_{n=1}^{\infty} \frac{40n}{(2n-1)^2 (2n+1)^2}$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{\ln(n+2)} - \frac{1}{\ln(n+1)} \right)$$

Which of the following series converges and which diverges? Find the sum of the convergent series.

$$\sum_{n=0}^{\infty} e^{-2n}$$

$$\sum_{n=1}^{\infty} \frac{2}{10^n}$$

$$\sum_{n=0}^{\infty} \frac{2^n - 1}{3^n}$$

$$\sum_{n=0}^{\infty} \frac{n!}{1000^n}$$

$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

$$\sum_{n=0}^{\infty} \left(\frac{e}{\pi}\right)^n$$

Which of the following series converges and which diverges?

$$\sum_{n=1}^{\infty} \frac{-1}{8^n}$$

$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

$$\sum_{n=1}^{\infty} \frac{2^n}{3^n}$$

$$\sum_{n=1}^{\infty} \frac{3}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^n}$$

$$\sum_{n=3}^{\infty} \frac{\left(1/n\right)}{\left(\ln n\right)\sqrt{\ln^2 n - 1}}$$

$$\sum_{n=1}^{\infty} n \sin \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$$

$$\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n}$$

$$\sum_{n=1}^{\infty} n! e^{-n}$$

$$\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$$

$$\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^n$$

$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$

$$\sum_{n=2}^{\infty} \frac{n}{(\ln n)^n}$$

$$\sum_{n=1}^{\infty} \frac{(n!)^n}{(n^n)^2}$$

$$\sum_{n=1}^{\infty} \frac{n^n}{2^{\binom{n^2}{2}}}$$