

Al-Mustaqbal University / College of Engineering & Technology Computer Technique Engineering Department Second Class

Advance Engineering Mathematic / Code (MU0222002)
Lecturer Dr. Abdullah Jabar Hussain
2nd term – Lecture No. &6,7,8 Lecture Name (Ordinary D.E)

Solution of homogenouse second order differential equations

Al-Mustaqbal University / College of Engineering & Technology Computer Technique Engineering Department Second Class

Advance Engineering Mathematic / Code (MU0222002) Lecturer Dr. Abdullah Jabar Hussain 2nd term – Lecture No. &6,7,8 Lecture Name (Ordinary D.E)

Solution of homogenouse second order differential equations

The homogenouse differential equations are in the following form:

$$ay'' + by' + cy = 0$$

So, to solve the above equation depend on the following auxillary:

$$a m^2 + bm + c = 0$$

then m1 and m2 are the roots of the above equation.

1. If m1 and m2 are real are not equal

m1≠m2

then the general solution is as follows:

$$\mathbf{v} = \mathbf{A}\mathbf{e}^{\mathbf{m}1\mathbf{x}} + \mathbf{B}\mathbf{e}^{\mathbf{m}2\mathbf{x}}$$

Example:1

Find the general solution of the following second order differential equation:

$$y'' - 7y' + 12y = 0$$

2. If m1 = m2 and real numbers then the solution is asd follows

$$y=e^{mx}(A+Bx)$$

Example:2

$$y'' + 6 y' + 9y = 0$$

3. If the roots are complex (m=a+ib) then the solution is as follows:

$$y = e^{ax} (A \cos bx + B \sin bx)$$

Example:3

$$y'' - 2y' + 10y = 0$$

4. If the differential equatioon have the following form:

 $y'' + n^2y = 0$, where n is constant and $m = \pm ib$ `then the general solution is as follows:

$$y = A \cos bx + B \sin bx$$

Example:4

$$y'' + 16 y = 0$$

5. If the differential equatioon have the following form:

 $y'' - n^2y = 0$, where n is constant and $m = \pm a$ `then the general solution is as follows:

$$y = A \cosh ax + B \sinh ax$$

Example 5:

$$y'' - 4y = 0$$