

Al-Mustaqbal University / College of Engineering & Technology Computer Technique Engineering Department Second Class

Advance Engineering Mathematic / Code (UOMU022041)
Lecturer Dr. Abdullah Jabar Hussain
2nd term – Lecture No. &9,10 Lecture Name (Sequences & Series)

Sequences & Series

Sequences & Series

Sequences:

An **infinite sequence** of numbers is a function whose domain is the set of positive integers.

EX:

$$\{a_n\} = \left\{ \sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots \right\}$$

$$\{b_n\} = \left\{ 1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1} \frac{1}{n}, \dots \right\}$$

$$\{c_n\} = \left\{ 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n-1}{n}, \dots \right\}$$

$$\{d_n\} = \{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots \}.$$

DEFINITIONS Converges, Diverges, Limit

The sequence $\{a_n\}$ converges to the number L if to every positive number ϵ there corresponds an integer N such that for all n,

$$n > N \Rightarrow |a_n - L| < \epsilon$$
.

If no such number L exists, we say that $\{a_n\}$ diverges.

If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the **limit** of the sequence (Figure 11.2).

EXAMPLE 1 Applying the Definition

Show that

(a)
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 (b) $\lim_{n \to \infty} k = k$ (any constant k)

Solution

(a) Let $\epsilon > 0$ be given. We must show that there exists an integer N such that for all n,

$$n > N \qquad \Rightarrow \qquad \left| \frac{1}{n} - 0 \right| < \epsilon.$$

This implication will hold if $(1/n) < \epsilon$ or $n > 1/\epsilon$. If N is any integer greater than $1/\epsilon$, the implication will hold for all n > N. This proves that $\lim_{n\to\infty} (1/n) = 0$.

(b) Let $\epsilon > 0$ be given. We must show that there exists an integer N such that for all n,

$$n > N \Rightarrow |k-k| < \epsilon$$
.

Since k - k = 0, we can use any positive integer for N and the implication will hold. This proves that $\lim_{n\to\infty} k = k$ for any constant k.

EXAMPLE 2 A Divergent Sequence

Show that the sequence $\{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$ diverges.

Suppose the sequence converges to some number L. By choosing $\epsilon = 1/2$ in Solution the definition of the limit, all terms a_n of the sequence with index n larger than some N must lie within $\epsilon = 1/2$ of L. Since the number 1 appears repeatedly as every other term of the sequence, we must have that the number 1 lies within the distance $\epsilon = 1/2$ of L. It follows that |L-1| < 1/2, or equivalently, 1/2 < L < 3/2. Likewise, the number -1appears repeatedly in the sequence with arbitrarily high index. So we must also have that |L - (-1)| < 1/2, or equivalently, -3/2 < L < -1/2. But the number L cannot lie in both of the intervals (1/2, 3/2) and (-3/2, -1/2) because they have no overlap. Therefore, no such limit L exists and so the sequence diverges.

Theorem:

$$\lim_{n\to\infty} \frac{f(x)}{g(x)} = \lim_{n\to\infty} \frac{f'(x)}{g'(x)}$$
 (L'Hopital's Rule)
$$\frac{0}{0}, \frac{\infty}{\infty}, \frac{0}{\infty}$$
يستخدم في حالة التعويض وينتج

EX: Use L'Hopital's Rule to find

$$\lim_{n\to\infty}\frac{2^n}{5n}.$$

By l'Hôpital's Rule (differentiating with respect to n),

$$\lim_{n \to \infty} \frac{2^n}{5n} = \lim_{n \to \infty} \frac{2^n \cdot \ln 2}{5}$$
$$= \infty.$$

Applying L'Hôpital's Rule to Determine Convergence

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$

Solution The limit leads to the indeterminate form 1^{∞} . We can apply l'Hôpital's Rule if we first change the form to $\infty \cdot 0$ by taking the natural logarithm of a_n :

$$\ln a_n = \ln \left(\frac{n+1}{n-1} \right)^n$$
$$= n \ln \left(\frac{n+1}{n-1} \right).$$

Then,

$$\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} n \ln \left(\frac{n+1}{n-1} \right) \qquad \infty \cdot 0$$

$$= \lim_{n \to \infty} \frac{\ln \left(\frac{n+1}{n-1} \right)}{1/n} \qquad \frac{0}{0}$$

$$= \lim_{n \to \infty} \frac{-2/(n^2-1)}{-1/n^2} \qquad \text{l'Hôpital's Rule}$$

$$= \lim_{n \to \infty} \frac{2n^2}{n^2-1} = 2.$$

Since $\ln a_n \to 2$ and $f(x) = e^x$ is continuous, Theorem 4 tells us that $a_n = e^{\ln a_n} \to e^2$.

The sequence $\{a_n\}$ converges to e^2 .

The following six sequences converge to the limits listed below:

$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$

$$\lim_{n\to\infty}\sqrt[n]{n}=1$$

3.
$$\lim_{n\to\infty} x^{1/n} = 1$$
 $(x>0)$

$$4. \quad \lim_{n\to\infty} x^n = 0 \qquad (|x|<1)$$

5.
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x \qquad (\text{any } x)$$

$$6. \quad \lim_{n\to\infty}\frac{x^n}{n!}=0 \qquad (\text{any } x)$$

In Formulas (3) through (6), x remains fixed as $n \to \infty$.

Ex: Check the convergence of the following sequences:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{\frac{n+1}{n}} = \sqrt{\lim_{n \to \infty} \frac{n+1}{n}} = \sqrt{\lim_{n \to \infty} (1+\frac{1}{n})} = \sqrt{1+\frac{1}{\infty}} = \sqrt{1+0}$$

$$= 1 (conv.)$$

$$2-a_n = (1 - \frac{3}{x})^n$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (1 - \frac{3}{x})^n = \lim_{n \to \infty} (1 + \frac{-3}{x})^n = e^{-3} \quad \text{conv. (from 5)}$$

Geometric Series

Geometric series are series of the form

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

in which a and r are fixed real numbers and $a \neq 0$. The series can also $\sum_{n=0}^{\infty} ar^n$. The ratio r can be positive, as in

$$1 + \frac{1}{2} + \frac{1}{4} + \cdots + \left(\frac{1}{2}\right)^{n-1} + \cdots,$$

or negative, as in

$$1 - \frac{1}{3} + \frac{1}{9} - \cdots + \left(-\frac{1}{3}\right)^{n-1} + \cdots$$

If r = 1, the *n*th partial sum of the geometric series is

$$s_n = a + a(1) + a(1)^2 + \cdots + a(1)^{n-1} = na$$

and the series diverges because $\lim_{n\to\infty} s_n = \pm \infty$, depending on the sign of a. If r = -1, the series diverges because the *n*th partial sums alternate between a and 0. If $|r| \neq 1$, we can determine the convergence or divergence of the series in the following way:

$$s_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$rs_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

$$s_n - rs_n = a - ar^n$$

$$s_n(1 - r) = a(1 - r^n)$$

$$s_n = \frac{a(1 - r^n)}{1 - r}, \qquad (r \neq 1).$$
Multiply s_n by r .

Subtract rs_n from s_n . Most of the terms on the right cancel.

Factor.

We can solve for s_n if $r \neq 1$.

If |r| < 1, then $r^n \to 0$ as $n \to \infty$ (as in Section 11.1) and $s_n \to a/(1-r)$. If |r| > 1, then $|r^n| \to \infty$ and the series diverges.

If |r| < 1, the geometric series $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ converges to a/(1-r):

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \qquad |r| < 1.$$

If $|r| \ge 1$, the series diverges.

Ex:
$$\sum_{n=0}^{\infty} (\frac{1}{2})^n$$
 is a G.S.

a=1 ,r=
$$\frac{1}{2}$$
 < 1 ∴ converge to $\frac{1}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$

The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$$

is a geometric series with a = 5 and r = -1/4. It converges to

$$\frac{a}{1-r}=\frac{5}{1+(1/4)}=4.$$

EX: $\sum_{n=0}^{\infty} 3^n$ divergence series because r=3>1

Express the repeating decimal 5.232323 . . . as the ratio of two integers.

Solution We look for a pattern in the sequence of partial sums that might lead to a formula for s_k . The key observation is the partial fraction decomposition

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

SO

$$\sum_{n=1}^{k} \frac{1}{n(n+1)} = \sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

and

$$s_k = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right).$$

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

$$s_k=1-\frac{1}{k+1}.$$

We now see that $s_k \to 1$ as $k \to \infty$. The series converges, and its sum is 1:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Tests of convergences:

nth term test for divergence:

for series $\sum_{n=1}^{\infty} a_n$ if $\lim_{n\to\infty} a_n \neq 0$ then the series is divergence

but $\lim_{n\to\infty} a_n = 0$ then this doesn't mean that $\sum a_n$ is converge.

EX:

- (a) $\sum_{n=1}^{\infty} n^2$ diverges because $n^2 \to \infty$
- (b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \to 1$
- (c) $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges because $\lim_{n\to\infty} (-1)^{n+1}$ does not exist
- (d) $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ diverges because $\lim_{n\to\infty} \frac{-n}{2n+5} = -\frac{1}{2} \neq 0$.

The integral test

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ both converge or both diverge.

Show that the *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

(p a real constant) converges if p > 1, and diverges if $p \le 1$.

Solution If p > 1, then $f(x) = 1/x^p$ is a positive decreasing function of x. Since

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \lim_{b \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{b}$$

$$= \frac{1}{1-p} \lim_{b \to \infty} \left(\frac{1}{b^{p-1}} - 1 \right)$$

$$= \frac{1}{1-p} (0-1) = \frac{1}{p-1}, \qquad b^{p-1} \to \infty \text{ as } b \to \infty \text{ because } p-1 > 0.$$

the series converges by the Integral Test. We emphasize that the sum of the p-series is not 1/(p-1). The series converges, but we don't know the value it converges to.

If p < 1, then 1 - p > 0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{1-p} \lim_{b \to \infty} (b^{1-p} - 1) = \infty.$$

The series diverges by the Integral Test.

If p = 1, we have the (divergent) harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots$$

We have convergence for p > 1 but divergence for every other value of p.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

converges by the Integral Test. The function $f(x) = 1/(x^2 + 1)$ is positive, continuous, and decreasing for $x \ge 1$, and

$$\int_{1}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{b \to \infty} \left[\arctan x \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left[\arctan b - \arctan 1 \right]$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

EX:

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} , , f(x) = \frac{1}{x \ln x}$$

$$\int_{2}^{\infty} f(x)dx = \lim_{n \to \infty} \left(\int_{2}^{\infty} \frac{1}{x \ln x} dx \right) = \lim_{n \to \infty} \left(\ln(\ln x) \right) \Big|_{2}^{n} =$$

$$\lim_{n\to\infty}(lnlnn-lnln2)=\infty$$

$$\therefore \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 is diverges

The ratio test:

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

(a) For the series $\sum_{n=0}^{\infty} (2^n + 5)/3^n$,

$$\frac{a_{n+1}}{a_n} = \frac{(2^{n+1}+5)/3^{n+1}}{(2^n+5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1}+5}{2^n+5} = \frac{1}{3} \cdot \left(\frac{2+5\cdot 2^{-n}}{1+5\cdot 2^{-n}}\right) \to \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.$$

The series converges because $\rho = 2/3$ is less than 1. This does *not* mean that 2/3 is the sum of the series. In fact,

(b) If
$$a_n = \frac{(2n)!}{n!n!}$$
, then $a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$ and
$$\frac{a_{n+1}}{a_n} = \frac{n!n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!}$$
$$= \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} \rightarrow 4.$$

The root test:

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$, and suppose that $\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$.

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

$$\sum_{n=1}^{\infty} (1 - \frac{3}{n})^{7n^2}$$

$$\lim_{n \to \infty} \sqrt[n]{(1 - \frac{3}{n})^{7n^2}} = \lim_{n \to \infty} (1 - \frac{3}{n})^{7n} = (e^{-3})^7 = e^{-21} < 1$$

Alternating Series:

A series of form $\sum_{n=0}^{\infty} (-1)^n a_n$ is called <u>Alternating Series</u> i.e.

$$\sum_{n=0}^{\infty} (-1)^n a_n = a_0 - a_1 + a_2 - a_3 - \cdots \dots$$

or
$$\sum_{n=0}^{\infty} (-1)^n a_n = \sum_{n=0}^{\infty} (\cos n\pi) a_n$$

The Alternating Series Test:

The series $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergence if:

- 1. $a_n > 0$ $(a_n \text{ is positive })$
- 2. $a_n \ge a_{n+1}$ for all $n \ge N$, for some integer N
- $3. \lim_{n\to\infty} a_n = 0$

Ex:

$$1 - \sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$$
 is converge since $\lim_{n \to \infty} \frac{1}{n} = 0$

2.
$$\sum_{n=0}^{\infty} \frac{(\cos n\pi)}{1+n^2} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{1+n^2}$$
 is converge since $\lim_{n \to \infty} \frac{1}{1+n^2} = 0$

Note:

1. If $\sum |(-1)^n a_n|$ is converge then $\sum (-1)^n a_n$ is converge If $\sum (-1)^n a_n$ is diverge then $\sum |(-1)^n a_n|$ is also diverge

The Absolutely & Conditional Convergence:

- 1. If $\sum (-1)^n a_n$ is convergence this series is called **Absolutely Convergent** if $\sum |(-1)^n a_n|$ is converge.
- 2. If $\sum (-1)^n a_n$ is convergence and $\sum |(-1)^n a_n|$ is divergence then $\sum (-1)^n a_n$ is called **Conditional Convergent**

1.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$$
 is conv. but $\sum \left| \frac{(-1)^n}{n} \right| = \sum_{n=0}^{\infty} \frac{1}{n}$ is diverge

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$$
 is Conditionally Convergent

$$2 - \sum_{n=0}^{\infty} (-1)^n \frac{n}{n+1}$$
 is divergence because $\lim_{n \to \infty} \frac{n}{n+1} = 1 \neq 0$

Power Series:

This has the form $\sum_{n=1}^{\infty} a_n (x-h)^n = a_1 (x-h) + a_2 (x-h)^2 + a_3 (x-h)^3 \dots$

To study these series we find the interval of x for absolute convergence by using the ratio test.

EX: Find the interval of absolute convergence of:

1.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Using ratio test $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$

$$\lim_{n \to \infty} \left| \frac{x^{2n+2}}{(2n+2)!} \cdot \frac{(2n)!}{x^{2n}} \right| < 1 = \lim_{n \to \infty} \left| \frac{x^2}{(2n+2)(2n+1)} \right| < 1$$

=0<1 for every value of x

 \therefore interval of conv. is $\infty > x > -\infty$

$$\sum_{n=0}^{\infty} 3^n \frac{(x+5)^n}{4^n}$$

Using ratio test $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$

$$\lim_{n \to \infty} \left| 3^{n+1} \frac{(x+5)^{n+1}}{4^{n+1}} \cdot \frac{4^n}{3^n (x+5)^n} \right| < 1 = \lim_{n \to \infty} \left| \frac{3}{4} (x+5) \right| < 1$$

$$= -1 < \frac{3}{4} (x+5) < 1$$

$$\frac{-4}{3} < x + 5 < \frac{4}{3}$$

$$-\frac{19}{3} < x < \frac{-11}{3} \quad \text{radius of conv. } R = 4/3$$

DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin series generated by f is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots,$$

the Taylor series generated by f at x = 0.

EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the series converge to 1/x?

Solution We need to find f(2), f'(2), f''(2), . . . Taking derivatives we get

$$f(x) = x^{-1}, f(2) = 2^{-1} = \frac{1}{2},$$

$$f'(x) = -x^{-2}, f'(2) = -\frac{1}{2^{2}},$$

$$f''(x) = 2!x^{-3}, \frac{f''(2)}{2!} = 2^{-3} = \frac{1}{2^{3}},$$

$$f'''(x) = -3!x^{-4}, \frac{f'''(2)}{3!} = -\frac{1}{2^{4}},$$

$$\vdots \vdots \vdots$$

$$f^{(n)}(x) = (-1)^{n}n!x^{-(n+1)}, \frac{f^{(n)}(2)}{n!} = \frac{(-1)^{n}}{2^{n+1}}.$$

The Taylor series is

$$f(2) + f'(2)(x - 2) + \frac{f''(2)}{2!}(x - 2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x - 2)^n + \dots$$

$$= \frac{1}{2} - \frac{(x - 2)}{2^2} + \frac{(x - 2)^2}{2^3} - \dots + (-1)^n \frac{(x - 2)^n}{2^{n+1}} + \dots$$

This is a geometric series with first term 1/2 and ratio r = -(x - 2)/2. It converges absolutely for |x - 2| < 2 and its sum is

$$\frac{1/2}{1+(x-2)/2}=\frac{1}{2+(x-2)}=\frac{1}{x}.$$