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Sequences & Series



Sequences & Series

Sequences :
An infinite sequence of numbers is a function whose domain is the set of positive

integers.
EX:
(a.} = {V1, V2, V3,...,Vn,...}
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DEFINITIONS  Converges, Diverges, Limit
The sequence {a,} converges to the number L if to every positive number € there
corresponds an integer N such that for all n,

n>N = lap, — L| < e.

If no such number L exists, we say that {a,} diverges.
If {a,} converges to L, we write lim,— a, = L, or simply a, — L, and call
L the limit of the sequence (Figure 11.2).

EXAMPLE 1 Applying the Definition

Show that

(a) lIim %— = 0O (b) Iim kA = Kk (any constant k)

n— o0 F1—=>



Solution

(a) Let e > 0 be given. We must show that there exists an integer N such that for all n,

=0

n < E.

n>N =

This implication will hold if (1/n) < € or n > 1/e. If N is any integer greater than
1 /€. the implication will hold for all n > N. This proves that lim,—(1/n) = 0.

(b) Let e > 0 be given. We must show that there exists an integer N such that for all n,

n>N = \k — k| <e.

Since kK — k = 0, we can use any positive integer for N and the implication will hold.
This proves that lim,—« k = k for any constant &. B



EXAMPLE 2 A Divergent Sequence
Show that the sequence {1, —1, 1, =1, 1, =1,..., (=1)"*',... } diverges.

Solution  Suppose the sequence converges to some number L. By choosing € = 1/2 in
the definition of the limit, all terms a, of the sequence with index » larger than some N
must lie within € = 1/2 of L. Since the number 1 appears repeatedly as every other term
of the sequence, we must have that the number 1 lies within the distance € = 1/2 of L. It
follows that |[L — 1| < 1/2, or equivalently, 1/2 < L < 3/2. Likewise, the number — 1
appears repeatedly in the sequence with arbitrarily high index. So we must also have that
IL — (=1)| < 1/2, orequivalently, =3/2 < L < —1/2. But the number L cannot lie in
both of the intervals (1/2, 3/2) and (—3/2, —1/2) because they have no overlap. There-
fore, no such limit L exists and so the sequence diverges.



Theorem:

lim L& = jjm L& (L’Hopital’s Rule )

n—oo g(x) n—oo g/(x)

EX: Use L’Hopital’s Rule to find

n

Ihim —.

By I"'Hopital’s Rule (differentiating with respect to »n).

Iim 2" = LIm 2"-In 2
n—00 5 n—0C0 5

= OO .,




Applying LHOpital's Rule to Determine Convergence

ﬂ:n—l—ln
" n — 1

Solution  The limit leads to the indeterminate form 1°. We can apply I'Hopital s Rule if
we first change the form to o0 « 0 by taking the natural logarithm of a,,:



Then.

lim Ina, = lim nln(”z ix 1) 20«0
n—hlx.' "—-b:Xl n I ]
(n -+ I)
|
n— 1
= lim g
n—0C l/n 0
.. —2fn" ~ 1)
= |im B I'Hopital’s Rule
n—>00 —1/n
2
— lim 21— =2
n—>xn —

Since Ina, — 2 and f(x) = e” is continuous, Theorem 4 tells us that

a, = e"%"—e?.

The sequence {a,} converges to e”.



The following six sequences converge to the limits listed below:

. In n
Iim

1. lim —5~ =0

2. lim Vn -

3. ,,li,."flcxl/" = ] (x = 0)

4. nll’nlx = (x| < 1)

- 9 ,,ll,.nl_ 1 + —) e” (any x)
6. lim —5 = 0 (any x)

In Formulas (3) through (6), x remains fixed as n — ©0.



Ex: Check the convergence of the following sequences :

l-a, = nTH
n+1 n+1 1
lim a, = lim =\/lim \/hm(1+—)— /1+—=\/1+0
n—oo n—-oo n n n—oo 00)
n—->oo
=1 (conv.)
3
'an:(l__)n

lim a,, = lim (1 — —)"— lim (1 + —)"=e~3 conv. (from 5)

n—0o n—0Co n—>0o



Geometric Series

Geometric series are series of the form
oo
a+‘+ar +ar*+ ---+ar™ '+ --- = E;ar"_"l
n—1

in which a and » are fixed real numbers and a &= 0. The series can alsg
) o ~
> .—oar”. The ratio r can be positive, as in

1 ‘ 1 Ln—l
1+2.4+---+(2) =

or negative, as in

1 1 e e
o d (L)



If r = 1, the nth partial sum of the geometric series 1s

sp=a+a(l) +a(1)? +---+ a(1)"! = na,

and the series diverges because lim,— s, = £00, depending on the sign of a. If r = —1,
the series diverges because the nth partial sums alternate between a and 0. If || # 1, we
can determine the convergence or divergence of the series in the following way:

Sn
rs,
Sn 5§ rSn
sp(1 — r)
Sp

I

a+ar+ar*+-+ar""!

ar +art+---+ar" '+ ar"

a — ar

a(l — r")

a(l — r")
1 o

Multiply s, by .

Subtract rs, from s,. Most of
the terms on the right cancel.
Factor.

We can solve for s, if r # 1.

If|r| < 1, then r" — 0 as n — o0 (as in Section 11.1) and s, —a/(1 — r). If [r| > 1,

then |r"|— o0 and the series diverges.



If |#| < 1, the geometric series a + ar + ar* + --- + ar" ' + --- converges

tWoiai(l — r):

= a
E n—1 — , lr| < 1.

If|r| = 1, the series diverges.

Ex: Z,?L":O(%)" isa G.S.

JE
1_

N |-

1 1
a=1 1= < 1 ~ convergeto T—=




The series

o0
(—1)"S 5 5 5
2~ =5—3%+ti6 @t
1s a geometric series witha = Sand »r = —1/4. It converges to
_ - S 4.

I —7 1% D

EX: Y7—o3™ divergence series because r=3>1

Express the repeating decimal 5.232323 ... as the ratio of two integers.



Solution ~ We look for a pattern in the sequence of partial sums that might lead to a for-
mula for s;. The key observation is the partial fraction decomposition

1 1

nin+1) " n+1

SO

k k 1 1
Z (n+l =§“l(ﬁ_n+l)

n=

_ (1 1 1 1 1 _1 Y S
S"_(l 2)*(2 3)+(3 4)+ +(k k+1)'

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

and

s=l—;
. TI15



We now see that sy — 1 as k — ©0. The series converges, and its sum is 1:

o0

> 1 b

Tests of convergences : =in(n+ 1)

nth term test for divergence :

for series ).,—; a, if lim a, # 0 then the series is divergence
n—->oo

but lim a,, = 0 then this doesn’t mean that ), a,, is converge .

n—>co

EX:



o0
(a) D, n* diverges because n* — o0

n=1
mn+l
b)EI
ﬂ:

(¢) E (—1)"*! diverges because lim,—(—1)""! does not exist

: n+ 1
diverges because —; > |

OO
—n ; , —n 1
(d) ’; 5% 4 5 diverges because lim,—oc m+ 5 - 2 # 0.

The integral test

Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where f is a
continuous, positive, decreasmg function of x for aII x = N (N a positive inte-

ger). Then the series S - v ay and the integral f v f(x) dx both converge or both
diverge.



Show that the p-series

< |
E-—~;,= + o+ o+ — +

(p a real constant) converges if p > 1, and diverges if p =

Solution If p = 1, then f(x) = 1/x” is a positive decreasing function of x. Since
/m d /m P dx = i [x—pH ]b
—dx = x m |————
y =¥ 1 oo | —p + X Ik
= lim ( - 1)
I = P b—© bp_l

1 1 bP ' — o0 as b—>
=1—p(0_])=}9_19 because p — 1 = 0.

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
1/(p — 1).The series converges. but we don’t know the value it converges to.
Ifp < 1.thenl — p = 0 and

il : l—p 1y _
[ xpdx_ 1 —pbli»n;c.(b L) =

The series diverges by the Integral Test.




If p = 1, we have the (divergent) harmonic series

1,1 1
L +5+3++g+

We have convergence for p > 1 but divergence for every other value of p.

S =

converges by the Integral Test. The function f(x) = 1/(x? + 1) is positive, continuous,
and decreasing forx = 1, and

oo
f > ! dx = lim [arctan :cr]iJ
1 X +1 b—oc

= lim [arctan b — arctan 1]

h—no
g T _5
2 4 4



EX:

Zn 2 7. 9999 f( )_

f f(x)dx= llm ( f —dx) = llm (ln(lnx)]

ninn xlnx

lim (Inlnn — Inin2)=

n—->00
Y L s diverges
N=2 ninn &

The ratio test :

Let > a, be a series with positive terms and suppose that

T An+ 1 _
1m a, P -

Then

(a) the series converges if p << 1,

(b) the series diverges if p = 1 or p i1s infinite,
(¢) the test is inconclusive if p = 1.



(a) For the series 3,0 (2" + 5)/3".

Gy @V +8)B q oblas 1 o572 12 3
= — — — . ) o g s
n (2" + 5)/3" 3 2245 3 \l+5:2 31T 3

The series converges because p = 2/3 is less than 1. This does nof mean that 2/3 is
the sum of the series. In fact,

2n)! (2n + 2)!

,thena,s+| = (n+ Din + 1)t and

(
(b) Ifa, = i

pe1 NIN'(2n + 2)(2n + 1)(2n)!

A (n+ 1)/(n + 1)'(2n)!

 (2n+2)2n+1) 4n+2

(n+1)n+1) n+1

>4,



The root test :

Let > a, be a series with a, = O forn = N. and suppose that

lim WZ., = p.

F o e

Then

(a) the series converges if p < 1,
(b) the series diverges if p = 1 or p is infinite,
(¢) the test is inconclusive it p = 1.

oo __ 3\7n?
5% ,(1-3)

. n _372 — . _§7n:
lim [(1 n)" lim (1 n)

n—-oo n—-0oo

(8_3)7 :e—21 <1



Alternating Series :

A series of form ),,_,(—1)"a,, is called Alternating Series i.c.

P o(~1)ay = ag—a; +a, — a3 — -

or Yn=o(—=1)"an = Xy=o(cosnm)an

The Alternating Series Test :

The series Y., —-o(—1)"a, is convergence if :

1. a, >0 (a, ispositive)
2. a, = anyq foralln = N for some integer N
3. lima, =0

n—>00

Ex:
o nl 1
1—Yr—o(—=1D"= isconverge since lim ==0
n n—-oon
(cos nm) nn) . .
2. Y=o o2 = Ym=o(—1 ) — isconverge since
1
lim =0

n—oo 1+n2



Note:
1. IfY|(—=1D)"a, | is converge then ),(—1)"a,, is converge

If .(—=1)"a,, is diverge then ),|(—1)"a,, | is also diverge

The Absolutely & Conditional Convergence:

1. IfY(—1)"a, is convergence .this series is called Absolutely Convergent if )|(—1)"a,, |
1s converge.

2. If).,(—1)"a, is convergence and ),|(—1)"a,, | is divergence then
Y.(—1)"a, is called Conditional Convergent

1. Z,‘f:(,(—l)"% is conv. but ), ‘(_111) ‘ = Zf{’z(,% is diverge

Z,?:o(—l)"% is Conditionally Convergent

2 — Z;‘fzo(—l)"ﬁ is divergence because lim —— =1 # 0

n-oo n+1



Power Series :

This has the form Y5, a,(x — h)"® =a,;(x — h) +a,(x —h)*+ az(x —h)3......

To study these series we find the interval of x for absolute convergence by using the
ratio test .

EX: Find the interval of absolute convergence of :

. ann
1' Zn=0(_1) (Zn)'
Using ratio test lim [ < 1
n—oo an
. x?nt2 (2n)! L x?
AI—I& (2n+2)! © x2n <1 _Al—l;go (2n+2)(2n+1) <1

=0<1 for every value of x

. Interval of conv.is o0 > x > —o0



(x+5)"

Z?lo=0 3n 411
Using ratio test lim [ < 1
n—oo an
: nt1 (x+5)M1 4n _ 1 |§ |
rlll—{go 3 4n+l " T 3N (x45)n <1 rlll—glo 4(x+ o) | <1
- -1<%(x+5) <1
o x+5< 2
3 3

19 ~11 .
Y <x< e radius of conv. R=4/3



DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by fatx = a is

(k) "
Ef 2« ~ af = fla) + f@)x - a) + 52— oy
(n)
+ - f n( )(x —a)" +
The Maclaurin series generated by f is
(k) " 0 (n) 0
Zf xt = fo) + frow+ P s B0

the Taylor series generated by fatx = 0.



EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the
series converge to 1/x?

Solution We need to find f(2), f'(2), f"(2)..... Taking derivatives we get
fx) = x7, f2) =27 =1,
Fx) = —x 2. FI2Y = —
ix) = 21%72, f;(!z) =273 = é
f(x) = =31x74, f";(!Z) = —2—l4.

f™2) (=1

n'! _ 2ﬂ+| =

fP(x) = (—1)y"nx— D,



The Taylor series 1s

, f'2) )
f@) + FYr—2) % S — 2 oo 7= m— 2 4o
1 =2 (x — 2)° (x — 2)
_5- 22 + 23 _...+(_1)ﬂ 2n+l Ll
This is a geometric series with first term 1/2 and ratior = —(x — 2)/2. It converges ab-
solutely for |[x — 2| < 2 and its sum is
1/2 1 |

1+(x—2)/2:2+(x—2):x'



