

Week 8: Functions and Function Arguments

Introduction to Functions
A function is a group of statements that exist within a program for the purpose of performing a

specific task. Functions are the next step toward creating optimized code as a software developer.

If the same block of code is reused repeatedly, a function allows the programmer to write the block

of code once, name the block, and use the code as many times as needed by calling the block by

name. Functions can read in values and return values to perform tasks, including complex

calculations.

Learning objectives
By the end of this section you should be able to

1. Identify function calls in a program.

2. Define a parameterless function that outputs strings.

3. Describe benefits of using functions.

Function Names
Before we discuss the process of creating and using functions, we should mention a few things

about function names. Just as you name the variables that you use in a program, you also name

the functions. A function’s name should be descriptive enough so that anyone reading your code

can reasonably guess what the function does.

Python requires that you follow the same rules that you follow when naming variables,

which we recap here:

1. You cannot use one of Python’s key words as a function name.

2. A function name cannot contain spaces.

3. The first character must be one of the letters a through z, A through Z, or an underscore

character (_).

4. After the first character you may use the letters a through z or A through Z, the digits 0

through 9, or underscores.

5. Uppercase and lowercase characters are distinct.

Defining and Calling a Function
A function is defined using the def keyword. The first line contains def followed by the function

name, parentheses (with any parameters), and a colon. A function must be defined before the

function is called.

To create a function, you write its definition. Here is the general format of a function definition

in Python:

def function_name():

statement

statement

etc.

def message():

 print('Welcome to')

 print('Al Mustaqbal University.')

Call the message function.

message()

Welcome to

Al Mustaqbal University.

This program has two functions. First we

define the main function.

def main():

 print('I have a message for you.')

 message()

 print('Goodbye!')

Next we define the message function.

def message():

 print('Welcome to')

 print('Al Mustaqbal University.')

 # Call the main function.

main()

I have a message for you.

Welcome to

Al Mustaqbal University.

Goodbye!

Passing Arguments to Functions
An argument is any piece of data that is passed into a function when the function is called. A

parameter is a variable that receives an argument that is passed into a function. Sometimes it is

useful not only to call a function, but also to send one or more pieces of data into the function.

Pieces of data that are sent into a function are known as arguments. The function can use its

arguments in calculations or other operations.

If you want a function to receive arguments when it is called, you must equip the function with

one or more parameter variables. A parameter variable, often simply called a parameter, is a special

variable that is assigned the value of an argument when a function is called. Here is an example of

a function that has a parameter variable:

def show_double(number):

 result = number * 2

 print(result)

This function’s name is show_double. Its purpose is to accept a number as an argument and

display the value of that number doubled. Look at the function header and notice the word number

that appear inside the parentheses. This is the name of a parameter variable. This variable will be

assigned the value of an argument when the function is called.
This program demonstrates an argument being

passed to a function.

def main():

 value = 5

 show_double(value)

The show_double function accepts an argument

and displays double its value.

def show_double(number):

 result = number * 2

 print(result)

Call the main function.

main()

10

Passing Multiple Arguments
Often, it’s useful to write functions that can accept multiple arguments. Program shows a

function named show sum, that accepts two arguments. The function adds the two arguments and

displays their sum.

This program demonstrates a function that accepts

two arguments.

def main():

 print('The sum of 12 and 45 is')

 show_sum(12, 45)

 # The show_sum function accepts two arguments

and displays their sum.

def show_sum(num1, num2):

 result = num1 + num2

 print(result)

Call the main function.

main()

The sum of 12 and 45 is

57

Making Changes to Parameters
When an argument is passed to a function in Python, the function parameter variable will reference

the argument’s value. However, any changes that are made to the parameter variable will not affect

the argument.
This program demonstrates what happens when you

change the value of a parameter.

def main():

 value = 99

 print('The value is', value)

 change_me(value)

 print('Back in main the value is', value)

def change_me(arg):

 print('I am changing the value.')

 arg = 0

 print('Now the value is', arg)

Call the main function.

main()

The value is 99

I am changing the value.

Now the value is 0

Back in main the value is 99

Global Variables and Global Constants
A global variable is accessible to all the functions in a program file.

When a variable is created by an assignment statement that is written outside all the functions in

a program file, the variable is global. A global variable can be accessed by any statement in the

program file, including the statements in any function.
Create a global variable.

my_value = 10

The show_value function prints

the value of the global variable.

def show_value():

 print(my_value)

Call the show_value function.

show_value()

10

Create a global variable.

number = 0

def main():

 global number

 number = int(input('Enter a number: '))

 show_number()

def show_number():

 print('The number you entered is', number)

Call the main function.

main()

Enter a number: 77

The number you entered is 77

Examples
Ask the user for their university name

name = input("What's your university name? ")

Print the output

print(f"hello, {name}")

What's your university name? Al Mustaqbal University

hello, Al Mustaqbal University

We can better our code to create our own special function that says “hello” for us!
def hello():

 print("hello")

name = input("What's your university name? ")

hello()

print(name)

What's your university name? Al Mustaqbal University

hello

Al Mustaqbal University
Create our own function

def hello(to):

 print("3 hello,", to)

Output using our own function name = input("What's your name? ")

hello(name)

Output using our own function

name = input("What's your name4? ")

hello(name)

3 hello, Al Mustaqbal University

What's your name4? Al Mustaqbal University

3 hello, Al Mustaqbal University

We can change our code to add a default value to hello:
Create our own function

def hello(to="world"):

 print("hello,", to)

Output using our own function

name = input("What's your university name5? ")

hello(name)

Output without passing the expected arguments

hello()

What's your university name5? Al Mustaqbal University

hello, Al Mustaqbal University

hello, world

def main():

Output using our own function

 name = input("What's your university name6? ")

 hello(name)

Output without passing the expected arguments

 hello()

Create our own function

def hello(to="world"):

 print("hello,", to)

main()

hello, Al Mustaqbal University
hello, world

Returning Values
def main():

 x = int(input("What's x? "))

 print("x squared is", square(x))

def square(n):

 return n * n

main()

What's x? 5
x squared is 25

def maxnum(x, y):

 if x > y:

 return x

 return y

print(maxnum(10, 20))

20
def maxnum(x, y):

 return max(x , y)

print(maxnum(10, 20))

20
def maxnum(x, y,z):

 return max(max(x , y),z)

print(maxnum(10, 20,50))

50

In Python, arguments are passed by object reference, which behaves like call by reference for

mutable objects and call by value for immutable objects.

1. Call by Value (Immutable Objects: int, float, string, tuple)

When you pass immutable objects (like numbers or strings), Python creates a new copy of the

value, so changes inside the function do not affect the original variable.

def modify_value(x):

 x = 20 # Changes local copy, does not affect original variable

 print("Inside function:", x)

a = 10

modify_value(a)

print("Outside function:", a) # Original value remains unchanged

Inside function: 20

Outside function: 10

2. Call by Reference (Mutable Objects: list, dict, set)
When you pass mutable objects (like lists or dictionaries), Python passes a reference to the same

object, so modifications inside the function affect the original variable.
def modify_list(lst):

 lst.append(4) # Modifies the original list

 print("Inside function:", lst)

my_list = [1, 2, 3]

modify_list(my_list)

print("Outside function:", my_list) # Original list is modified

Inside function: [1, 2, 3, 4]

Outside function: [1, 2, 3, 4]

def print_greeting():

 print(out_str)

hour = int(input("Enter thr Hour: "))

min = int(input("Enter thr Min: "))

if hour < 12:

 out_str = "Good morning"

else:

 out_str = "Good day"

print_greeting()

Enter thr Hour: 8

Enter thr Min: 30

Good morning

This program gets three test scores and displays

their average. It congratulates the user if the

average is a high score.

Global constant for a high score

HIGH_SCORE = 95

def main():

 #Get the three test scores.

 test1 = int(input('Enter the score for test 1: '))

 test2 = int(input('Enter the score for test 2: '))

 test3 = int(input('Enter the score for test 3: '))

 # Calculate the average test score.

 average = (test1 + test2 + test3) / 3

Print the average.

 print('The average score is', average)

If the average is a high score,

congratulate the user.

 if average >= HIGH_SCORE:

 print('Congratulations!')

 print('That is a great average!')

Call the main function

main()

Enter the score for test 1: 99

Enter the score for test 2: 98

Enter the score for test 3: 97

The average score is 98.0

Congratulations!

That is a great average!

def main():

Print the table headings.

 print('Number\tSquare')

 print('--------------')

Print the numbers 1 through 10

 # and their squares.

 for number in range(1, 11):

 square = number**2

 print(number, '\t', square)

 # Call the main function.

main()

Number Square

1 1
2 4
3 9
4 16
5 25

6 36
7 49
8 64
9 81
10 100

This program uses a loop to display a

table of numbers and their squares.

def main():

 # Get the ending limit.

 print('This program displays a list of numbers')

 print('(starting at 1) and their squares.')

 end = int(input('How high should I go? '))

 # Print the table headings.

 print()

 print('Number\tSquare')

 print('--------------')

 # Print the numbers and their squares.

 for number in range(1, end + 1):

 square = number**2

 print(number, '\t', square)

 # Call the main function.

main()

This program displays a list of numbers

(starting at 1) and their squares.

How high should I go? 5

Number Square

1 1
2 4
3 9
4 16
5 25

