

Week 1: Introduction to Python, Variables, Data Types, and Basic Operators

Basic input
A computer is an electronic device that stores and processes information. Examples of computers

include smartphones, tablets, laptops, desktops, and servers. Technically, a program is a sequence

of instructions that a computer can run. Programs help people accomplish everyday tasks, create

new technology, and have fun.

The Python language

one of the top programming languages today. Leading tech giants like Google, Apple, NASA,

Instagram, Pixar, and others use Python extensively.

One reason why Python is popular is because many libraries exist for doing real work. A library

is a collection of code that can be used in other programs. Python comes with an extensive Standard

Library for solving everyday computing problems like extracting data from files and creating

summary reports. In addition, the community develops many other libraries for Python.

Another reason why Python is popular is because the syntax is concise and straightforward. The

syntax of a language defines how code must be structured. Syntax rules define the keywords,

symbols, and formatting used in programs. Compared to other programming languages, Python is

more concise and straightforward.

Hello world in Python and Java

By tradition, Hello World is the first program to write when learning a new language. This program

simply displays the message "Hello, World!" to the user. The hello world

program is only one line in Python:

print("Hello, World!")

In contrast, the hello world program is five lines in Java (a different language).

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

Input/output
Learning objectives
By the end of week 1 you should be able to

• Display output using the print() function.

• Obtain user input using the input() function.

Basic output
The print() function displays output to the user. Output is the information or result produced by

a program. The sep and end options can be used to customize the output. Table 1.1 shows examples

of sep and end.

Multiple values, separated by commas, can be printed in the same statement. By default, each

value is separated by a space character in the output. The sep option can be used to change this

behavior.

By default, the print() function adds a newline character at the end of the output. A newline

character tells the display to move to the next line. The end option can be used to continue printing

on the same line.

Basic input

Computer programs often receive input from the user. Input is what a user enters into a program.

An input statement, variable = input("prompt"), has three parts:

1. A variable refers to a value stored in memory. In the statement above, variable can be replaced

with any name the programmer chooses.

2. The input() function reads one line of input from the user. A function is a named, reusable block

of code that performs a task when called. The input is stored in the computer's memory and can be

accessed later using the variable.

3. A prompt is a short message that indicates the program is waiting for input. In the statement

above, "prompt" can be omitted or replaced with any message.

Ex1
variable = input("prompt")

Program Output

Prompt

Ex2
print("Please enter a number: ")

number = input()

print("Value =", number)

Program Output

Please enter a number:

1

Value = 1

Variables

Learning objectives
By the end of this week 1 you should be able to

• Assign variables and print variables.

• Explain rules for naming variables.

Assignment statement
Variables allow programs to refer to values using names rather than memory locations. Ex: age

refers to a person's age, and birth refers to a person's date of birth.

A statement can set a variable to a value using the assignment operator (=). Note that this is

different from the equal sign of mathematics. Ex: age = 6 or birth = "May 15". The left side of

the assignment statement is a variable, and the right side is the value the variable is assigned.

Ex3
city = "Baghdad"

print("The city where you live is", city)

Program Output

The city where you live is Baghdad

Variable naming rules
A variable name can consist of letters, digits, and underscores and be of any length. The name

cannot start with a digit. Ex: 101class is invalid. Also, letter case matters. Ex: Total is different

from total. Python's style guide recommends writing variable names in snake case, which is all

lowercase with underscores in between each word, such as first_name or total_price.

A name should be short and descriptive, so words are preferred over single characters in programs

for readability. Ex: A variable named count indicates the variable's purpose better than a variable

named c. Python has reserved words, known as keywords, which have special functions and

cannot be used as names for variables (or other objects).

Table Keywords

Numeric data types
Python supports two basic number formats, integer and floating-point. An integer represents a

whole number, and a floating-point format represents a decimal number. The format a language

uses to represent data is called a data type. In addition to integer and floating-point types,

programming languages typically have a string type for representing text.

Assigning values to variables

Operator precedence
When a calculation has multiple operators, each operator is evaluated in order of precedence. Ex:

1 + 2 * 3 is 7 because multiplication takes precedence over addition. However, (1 + 2) * 3 is 9

because parentheses take precedence over multiplication.

Table Operator precedence from highest to lowest.

Relational operators

The 6 comparison operators:
• equal to: ==
• not equal to: !=
• greater than: >
• less than: <
• greater than or equal to: >=
• less than or equal to: <=

1. Simple arithmetic operations:
Four basic arithmetic operators exist in Python:
1. Addition (+)
2. Subtraction (-)
3. Multiplication (*)
4. Division (/)
a = 10 # Integer variable

b = 20 # Integer variable # Variables a and b are assigned integer values.

Performing arithmetic operations

print("Sum:", a + b) # Adds a and b function displays the sum of a and b.

print("Difference:", a - b) # Subtracts b from a function displays the difference between a and b

print("Division:", b / a) # Division b and a

print("Integer division:", b // a) # Integer division b and a

print("Remainder:", b % a) # Remainder a % b

print("Raises a number:", 3 ** 2)

Program Output

Sum: 30

Difference: -10

Division: 2.0

Integer division: 2

Remainder: 0

Raises a number: 9

2. Comparison operators:
x = 5

y = 10 #ariables x and y are assigned integer values.

print(x > y) # Checks if x is greater than y

print(x <= y) # Checks if x is less than or equal to y

Run

False

True

3. Logical operators:

Ex

is_sunny = True

is_warm = False

print(is_sunny and is_warm) # Checks if both conditions are True

print(is_sunny or is_warm) # Checks if at least one condition is True

Program Output

False

True

The \t escape character advances the output to the next horizontal tab position. (A
tab position normally appears after every eighth character.) The following statements
are illustrative:
print('Mon\tTues\tWed')

print('Thur\tFri\tSat')

This statement prints Monday, then advances the output to the next tab position,
then prints Tuesday, then advances the output to the next tab position, then prints
Wednesday. The output will look like this:
Mon Tues Wed
Thur Fri Sat

How to read errors
A natural part of programming is making mistakes. Even experienced programmers make

mistakes when writing code. Errors may result when mistakes are made when writing code. The

computer requires very specific instructions telling the computer what to do. If the instructions

are not clear, then the computer does not know what to do and gives back an error.

When an error occurs, Python displays a message with the following information:

1. The line number of the error.

2. The type of error (Ex: SyntaxError).

3. Additional details about the error.

Ex: Typing print "Hello!" without parentheses is a syntax error. In Python, parentheses are

required to use print. When attempting to run print "Hello!", Python displays the following error:

print "Hello!"

Traceback (most recent call last):

File "C:\PycharmProjects\PythonProjectErrors\main.py", line 1

 print "Hello!"

 ^^^^^^^^^^^^^^

SyntaxError: Missing parentheses in call to 'print'. Did you mean print(...)?

Common types of errors

Different types of errors may occur when running Python programs. When an error occurs,

knowing the type of error gives insight about how to correct the error. The following table shows

examples of mistakes that anyone could make when programming.

Table Simple mistakes.
print("Have a nice day!"

File "G:\PycharmProjects\PythonProjectErrors\main.py", line 3

 print("Have a nice day!"

 ^

SyntaxError: '(' was never closed
word = input("Type a word:)

File "C:\PycharmProjects\PythonProjectErrors\main.py", line 5

 word = input("Type a word:)

 ^

SyntaxError: unterminated string literal (detected at line 5)
word = input("Type a word:")

print("You typed:", wird)

Traceback (most recent call last):

 File "G:\PycharmProjects\PythonProjectErrors\main.py", line 6, in <module>

 print("You typed:", wird)

 ^^^^

NameError: name 'wird' is not defined. Did you mean: 'word'?
word = input("Type a word:")

prints("You typed:", word)

Traceback (most recent call last):

 File "C:\PycharmProjects\PythonProjectErrors\main.py", line 8, in <module>

 prints("You typed:", word)

 ^^^^^^

NameError: name 'prints' is not defined. Did you mean: 'print'?

 print("Hello")

File "C:\PycharmProjects\PythonProjectErrors\main.py", line 10

 print("Hello")

IndentationError: unexpected indent

 print("Hello")

File "C:\PycharmProjects\PythonProjectErrors\main.py", line 10

 print("Hello")

IndentationError: unexpected indent

The hash character

Comments are short phrases that explain what the code is doing. In the following program

contain comments. Each comment begins with a hash character (#). All text from the hash

character to the end of the line is ignored when running the program. In contrast, hash characters

inside of strings are treated as regular text.

#print "Hello!"

#print("Have a nice day!"

#word = input("Type a word:")

#print("You typed:", word)

#ord = input("Type a word:")

#prints("You typed:", word)

print("Welcome to Al Mutagbal University")

C:\PycharmProjects\PythonProjectErrors\main.py

Welcome to Al Mutagbal University

Floating-point errors
Computers store information using 0's and 1's. All information must be converted to a string of 0's

and 1's. Ex: 5 is converted to 101. Since only two values, 0 or 1, are allowed the format is called

binary. Floating-point values are stored as binary by Python. The conversion of a floating point

number to the underlying binary results in specific types of floating-point errors.

A round-off error occurs when floating-point values are stored erroneously as an approximation.

The difference between an approximation of a value used in computation and the correct (true)

value is called a round-off error

