

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

Interfacing I/O Devices

❖ I/O devices are the communications channels between the MP and the outside world.

❖ Data transfer
 Parallel I/O mode (group of bits transferred simultaneously via group of lines)
 Serial I/O mode (one bit is a transferred via single line at a time

❖ Typical block diagram representing the interfacing between MP and I/O device.

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

Explain:

1. **Decoder**:

- o The low-order address bus (AB) is given as input to the decoder.
- o It generates a specific I/O address (IOADR) for the required I/O device.

2. Gate Control:

- o The decoder's output is combined with the control signals to enable data transfer.
- o It ensures that only the addressed I/O port is activated.

3. **I/O Port**:

- o It serves as an interface between the microprocessor and the input/output device.
- o It connects to an external input (IP) or output (OP) device.

4. Control Logic (AND Gates):

- \circ IO/ \overline{M} , R \overline{D} , and W \overline{R} signals determine whether the operation is a read or write.
- o **IOR (I/O Read)**: Generated when $IO/\overline{M} = 1$ and $R\overline{D} = 0$, indicating a read operation from an input device.
- o **IOW (I/O Write)**: Generated when $IO/\overline{M} = 1$ and $W\overline{R} = 0$, indicating a write operation to an output device.

5. Data Bus (DB):

o Transfers data between the microprocessor and the I/O port.

How It Works:

1. I/O Read Operation:

- o The microprocessor places the I/O address on the address bus.
- The decoder selects the corresponding I/O port.
- o The control logic confirms IOR to enable data transfer from the input device to the microprocessor.

2. I/O Write Operation:

- o The microprocessor places the I/O address on the address bus.
- The decoder selects the corresponding I/O port.
- The control logic confirms IOW, allowing data transfer from the microprocessor to the output device.

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

Peripheral- mapped	Memory- mapped			
• I/O device is identified by 8 bit (A ₇ → A ₀) only	• I/O device is identified by 16 bit (A15 ←A0)			
i.e. 8085 MP can address 256 I/P 8256 O/P device.	8085 MP considers each device as a memory location.			
IOR & IOW are used to control the data transfer.	MEMR & MEMW are used to control the data transfer.			
IN & OUT instruction are used for programming.	ALL memory related instructions for data transfer can be used e.g. MOV A, M, STA, LDA etc.			

BUS timing during the execution of IN & OUT instruction:

Ex. OUT FF Stored in M.L 2050 H, the content of Acc. Equals to (BBH)	 2 byte instruction with opcode (D3) During the execution of this instruction the content of register (A) is transferred to the O/P device through O/P port which is addressed by (FF)
	Need O/P code fetch &memory read machine cycles for fetching part and I/O write machine cycle for execution part.

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

A. Interfacing O/P devices:

1. <u>Lighting Emitting Diode (LED)</u>

If $V_A > V_B \longrightarrow LED$ is in forward biasing $\longrightarrow LED$ emits light $\equiv logic$ (1)

Ex: Analyze the cct. Shown below:

Explanation of Components:

1. Address Decoding (IOADR Generation):

- o The low-order address bits (A0 to A7) are provided as inputs to the AND gate.
- This AND gate acts as a decoder, generating the IOADR (I/O Address Recognition Signal) when the specified address matches.
- o This ensures that only the intended I/O device is selected.

2. Control Signal Generation (IOSEL - I/O Select):

- o The IOW (I/O Write) signal is combined with IOADR using another AND gate to generate IOSEL.
- o **IOSEL** acts as an enabling signal that activates the latch, allowing data transfer.

3. Latch (Output Storage) for LED Control:

- o The latch stores the data (D0 to D7) received from the microprocessor.
- o The stored data remains available even after the microprocessor moves on to other tasks.
- o This is crucial for output devices like LEDs, as they need to stay ON/OFF without continuous microprocessor intervention.

4. LED Connection:

o Each bit (D0 to D7) in the latch corresponds to an LED.

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

- If a data bit is **high (1)**, the LED **turns ON**; if it is **low (0)**, the LED **turns OFF**.
- Current-limiting resistors are used to protect the LEDs.

5. Power Supply (Vcc):

o The LEDs are connected to **Vcc** and are controlled by the **latch outputs through transistors or drivers**.

How It Works:

- 1. The microprocessor sends an address on the address bus.
- 2. The decoder recognizes the address and generates IOADR.
- 3. The microprocessor issues an I/O Write (IOW) signal.
- 4. The AND gate combines IOADR and IOW to generate IOSEL, enabling the latch.
- 5. The latch captures the data from the data bus (D0 to D7) and holds it.
- 6. The stored data **controls the LEDs**:
 - A bit 1 (HIGH) \rightarrow LED ON.
 - A bit 0 (LOW) \rightarrow LED OFF.

2. Segment Display:

Each segment is a LED

There are two types of 7segment display as below:-

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

Ex. What is the range of addresses, interfacing technique & type of decoding for each port in the following cct. What will be display if (Acc) = 06H

Latch. (2)

Latch (2) can be address one of the following:

14H, 54H, 94H, D4H (linear decoding)

A_7	A_6	A_5	A ₄	A_3	A_2	\mathbf{A}_1	A ₀
X	X	0	1	0	1	0	0

Lecturer (Dr. Mayas Aljibawi)

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

Latch (1)

Latch (1) can be addressed by:

24H, 64H, A4H, E4H (linear decoding)

To transfer (Acc) through latch (1)

\mathbf{A}_7	A_6	A_5	A ₄	A_3	A_2	A ₁	A_0
X	X	1	0	0	1	0	0

MVI A,06

OUT 24 H, OUT A4H, OUT E4H, OUT 64H

E will be displayed

• To transfer (Acc) through latch (2), MVI A 06

OUT 14, OUT 54, OUT 94, OUT D4

No. (1) will be displayed

2nd term – (Lec. 5 Input devices interfacing, Output devices interfacing)

The interfacing of Input Devices

- The basic concepts are similar to interfacing of output devices.
- The address lines are decoded to generate a signal that is active when the particular port is being accessed.
- An *IORD* signal is generated by combining the *IO/M* and the *RD* signals from the microprocessor.
- A tri-state buffer is used to connect the input device to the data bus.
- The control (Enable) for these buffers is connected to the result of combining the address signal and the signal *IORD*.

