5.6 Power delay profile

- The power delay profile relates the received power of a signal through a multipath channel as a function of the time delay.
- The total received power is the sum of the powers in the individual multipath components.
- The power delay profile can be measured empirically.
- Time dispersion parameters are used to quantify the time-dispersive properties of multipath channels, and can be determined form the power-delay profile.

5.7 Coherence bandwidth

- The delay spread is a natural phenomenon caused by reflected and scattered propagation paths in the radio channel.
- The coherence bandwidth (B_c) is a statistical measure of the range of frequencies over which the channel can be considered "flat"
 - Spectral components within B_c pass with approximately equal gain & linear phase.
 - B_c is derived from the rms delay spread (σ_{τ}) .
- Two sinusoids with frequency separation greater than B_c are affected quite differently by the channel, and their amplitudes would be considered uncorrelated.
 - For If the coherent bandwidth (B_c) is defined as the bandwidth over which the frequency correlation function is above 0.9 (90%), then the coherence bandwidth is approximated by

$$B_c \approx \frac{1}{50\sigma_{\tau}}$$

Chapter 5

Small scale multipath propagation

➤ If the frequency correlation function is above 0.5 (50%) (relaxed definition), then the coherence bandwidth is approximately

$$B_c \approx \frac{1}{5\sigma_{\tau}}$$

5.8 Fading effects due to multipath time delay spread

- Time dispersion due to multipath causes the transmitted signal to undergo either one of the following:
 - 1. Flat fading
 - 2. Frequency selective fading

1- Flat fading

- The received signal undergoes *flat fading* if the channel has a constant gain and linear phase response over a bandwidth which is greater than the bandwidth of the transmitted signal.
- In frequency domain: $B_S < B_C$

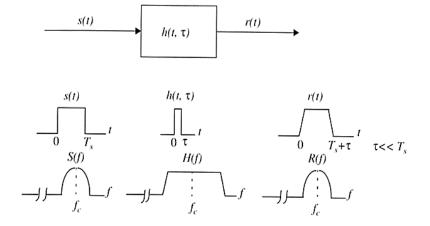
B_s: signal bandwidth

B_c: coherence bandwidth

• In time domain: $T_S > \sigma_{\tau}$

Ts: symbol period (reciprocal bandwidth)

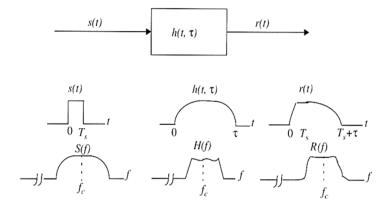
 $σ_τ$: rms delay spread of channel


In general $\sigma \tau \leq 0.1 T_s$

• Inter-symbol interference (ISI) is low (negligible)

- The received signal strength changes with time, due to fluctuations in the gain of the channel caused by multipath.
- The spectral characteristics of the transmitted signal are preserved.
- Flat fading channel is also called:
 - Amplitude varying channel.
 - Narrow band channel: bandwidth

of the applied signal is narrow as compared to the channel bandwidth.


- Channel modeling:
 - Rayleigh flat fading channel model.

Flat fading channel characteristics

2- Frequency selective fading

- The channel creates *frequency selective fading* if the channel possesses a constant gain and linear phase response over a bandwidth that is smaller than the bandwidth of transmitted signal.
- In frequency domain: $B_S > B_C$
 - B_s : signal bandwidth
 - B_c : coherence bandwidth
- In time domain: $T_S > \sigma_{\tau}$
 - T_s : symbol period (reciprocal bandwidth)
 - σ_{τ} : rms delay spread
- Inter-symbol interference (ISI) is high (significant).
- Frequency selective fading is due to time dispersion of the transmitted symbols within the channel, and causes inter-symbol interference (ISI).
- Frequency selective fading channels are much more difficult to model than flat fading channels.
- Statistic impulse response models:
 - 2-ray Rayleigh fading model
 - Computer generated models
 - Measured impulse response

Frequency selective fading channel characteristics