

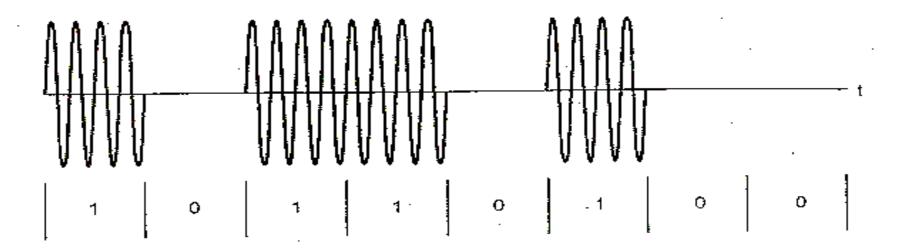
Al-Mustaqbal University College of Engineering & Technology Computer Techniques Engineering Department

Digital Communication

Lecture 11 Binary Amplitude Shift Keying (BASK)

Dr. Ahmed Hasan Al-Janabi PhD in Computer Network Email: <u>Ahmed.Janabi@uomus.edu.iq</u>

Introduction to BASK (ASK/OOK)

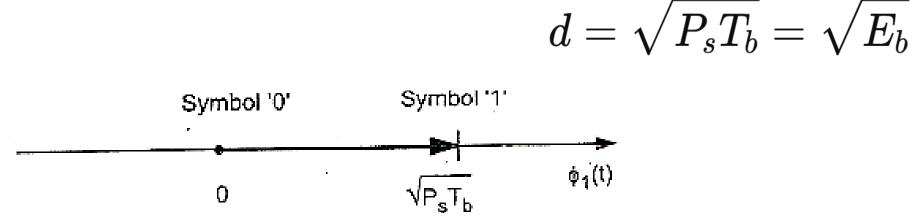

- Definition:
 - BASK (Binary Amplitude Shift Keying) is a digital modulation technique.
 - The presence or absence of a carrier represents binary data (ON-OFF Keying).
- Mathematical Representation:
 - When transmitting "1": $s(t) = \sqrt{2P_s}\cos(2\pi f_0 t)$
 - When transmitting "0": s(t) = 0 (no signal).

ASK Waveform Representation

• Equation for the signal for "1":

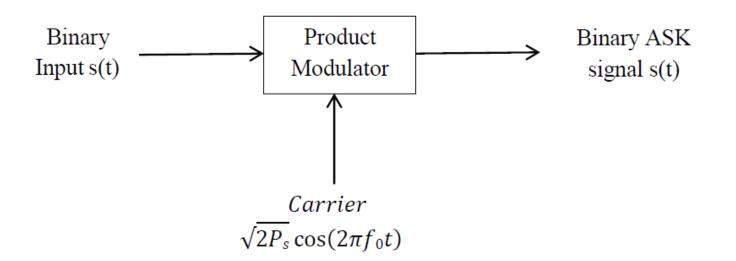
$$s(t) = \sqrt{P_s T_b} imes \sqrt{rac{2}{T_b}} \cos(2\pi f_0 t)$$

• The carrier is present for "1" and absent for "0".


Signal Space Representation

• Orthonormal Basis Function:

$$ullet$$
 $\phi_1(t)=\sqrt{rac{2}{T_b}}\cos(2\pi f_0 t)$

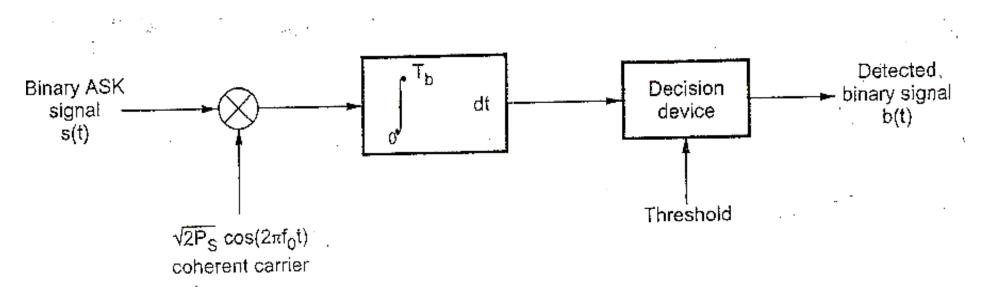

• Distance between signal points:

х.

Generation of BASK (ASK Modulator)

- How It Works:
 - A binary sequence is fed into a **product modulator**.
 - The modulator **passes the carrier** when the input is "1" and **blocks it** when input is "0".

Bandwidth of ASK


• Formula:

$$BW = (1+r)R$$

- R = Bit Rate
- 0 < r < 1 (depends on signal filtering).
- Key Concept: ASK has a narrow bandwidth but is more susceptible to noise.

ASK Detector (Receiver)

- How It Works:
 - The received ASK signal is processed through a **correlator** (multiplier + integrator).
 - A locally generated coherent carrier is applied to a multiplier.
 - The output of the integrator is compared to a threshold.
 - A decision is made at the end of each bit period.

Advantages of ASK

- Simple Implementation Uses basic ON/OFF modulation.
 Low Bandwidth Requirement More bandwidth-efficient than FSK.
- Efficient Power Usage Consumes less power for binary "0".
 Widely Used Found in RFID systems, optical fiber
 communication, and remote controls.

Disadvantages of ASK

Highly Susceptible to Noise – Amplitude variations are easily affected by interference.

Poor Performance in Long Distances – Attenuation can cause signal loss.

>Not Power-Efficient – Requires extra power to transmit "1".

Applications of ASK

Optical Fiber Communication – ASK is used in light

intensity modulation.

>RFID and Wireless Key Fobs – BASK is implemented in

low-power communication devices.

Early Modem Communication – Used in early digital data

transmission.

Conclusion

BASK (ASK) is the simplest digital modulation technique.

□Uses amplitude variations to transmit binary data.

Easy to implement but highly susceptible to noise.

Commonly used in low-power and optical communication systems.

Thank You