

Al-Mustaqbal University Department of Medical Instrumentation Techniques 2nd year

$\begin{array}{c} \textbf{Biomedical Transducers and Sensors} \\ \textbf{Dr. Zeyad Taha Yaseen} \\ \textbf{2}^{nd} \ term-Introduction \ to \ Biomedical Sensors} \end{array}$

Sensors with nonlinearity:

In many cases, when nonlinearity cannot be ignored, the transfer function can be approximated by a multitude of linear mathematical functions;

1. Logarithmic function:

$$S = A + B \ln s$$

$$s = e^{\frac{S-A}{B}}$$

2. Exponential function:

$$S = Ae^{ks}$$

$$s = \frac{1}{k} \ln \frac{S}{A}$$

3. Power function:

$$S = A + Bs^k$$

$$s = \sqrt[k]{\frac{S - A}{B}}$$

where A, B are parameters and k is the power factor.

Polynomial Approximations:

A sensor may have such a transfer function that none of the above functional approximations would fit sufficiently well. In this case, a polynomial approximation, that is a power series, can be applied.

Example:

$$S = Ae^{ks}$$

Al-Mustaqbal University Department of Medical Instrumentation Techniques 2nd year Biomedical Transducers and Sensors

Dr. Zeyad Taha Yaseen

2nd term – Introduction to Biomedical Sensors

The above exponential function can be approximately calculated by a third order polynomial by dropping all the higher terms of its series expansion:

$$S = Ae^{ks} \approx A\left(1 + ks + \frac{k^2}{2!}s^2 + \frac{k^3}{3!}s^3\right)$$

In many cases it is sufficient to investigate approximation of a sensor's response by the 2nd and 3rd degree polynomials that can be expressed as;

$$S = a_2s^2 + b_2s + c_2$$

$$S = a_3s^3 + b_3s^2 + c_3s + d_3$$

Linear Piecewise Approximation:

The idea is to break up a nonlinear transfer function of any shape into sections and consider each such section being linear. Curved segments between the sample points (knots) are replaced with straight line segments.

ACCOUNT OF THE PARTY OF THE PAR

Al-Mustaqbal University Department of Medical Instrumentation Techniques 2nd year Biomedical Transducers and Sensors

- An error of a piecewise approximation can be characterized by a maximum deviation (δ) of the approximation lines from the real curve.
- The knots do not need to be equally spaced. They should be closer to each other where a nonlinearity is high and farther apart where a nonlinearity is small.
- The spline interpolation method is using a different 3rd order polynomial interpolation between the selected experimental points called knots.

Multidimensional Transfer Functions:

A transfer function may be a function of more than one variable when the sensor's output is dependent on more than one input stimulus.

Example: Humidity sensor output depends on two input variables; relative humidity and temperature.

Al-Mustaqbal University Department of Medical Instrumentation Techniques 2nd year Biomedical Transducers and Sensors Dr. Zevad Taha Yaseen

Dr. Zeyad Taha Yaseen 2nd term – Introduction to Biomedical Sensors

Example: The transfer function of a thermal radiation (infrared) sensor has two parts; the absolute Temperature (Tb), and the absolute temperature (Ts) of the sensor's surface (measured by a separate temperature sensor. The output voltage (V) is nonlinear and proportional to the

$$V = G(T_b^4 - T_s^4)$$

difference;