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Lecture Two: Oscillations Dr. Mokhalad Ali = Mechanics

Damped Harmonic Motion
The foregoing analysis of the harmonic oscillator 1s idealized m that we didn't
take into account frictional forces. These are always present in any mechanical
system. Consider an object is supported by a spring of stiffness & and there was

a viscous retarding force varying linearly with the speed such as air resistance.
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Lecture Two: Oscillations Dr. Mokhalad Ali = Mechanics

= —kx ... .. (1) (restoring force)

== ... ... (2) (retarding force)
Equation of motion then:

& =i —Ck =ML wnsa(3)
m# + cx + kx = 0...(4) Differential Eq. of Motion for Damped Harmonic Oscillator
Use trail method to solve Eq. (4)

K= %

e m(Aet) +cL (Aett) +hkAet =0

smoz(Aet) +eq (Aet) +kAe® = ax?+bx+c=0

mq®Ael+cqAel +kAel =0] + Ae® —b¥+/b? — 4ac,

X =

mg>+ cq k=0 (5) Auxiliary Equation 2a
—c+Vc? — dmk

q= 2m """ (6)

> c? > A4mk (Over Damping)
Here g will be real and negative and the motion will be nonoscillatory
q1 # g, and (x) decaying to zero exponentially with time.
il ¢ gy 02 — 4mk )i
__ {yl Ly {Ale‘ht Jiaill 348 s Jidi €2 > 4mk s
1= "y, A,eret fuile, i, il S g Waley
The general solution for displacement is: um" # ‘\SPJ \ ‘USJ elldl, i,
G Ll x AV ded b by
x=A, et A, et .. (7) Gl pen sl
> ¢? = 4mk (Critical Damping)

Here g will be real also, and negative and the motion will be

nonoscillatory. (x) decaying to zero exponentially with time but in shorter

time.
— g T
qd1 =42 = om
et
= = > X =
e d {Azte‘yt

Page 2 0of 10




Lecture Two: Oscillations Dr. Mokhalad Ali = Mechanics

The general solution for displacement is:
x=A e Yy Aore™ ... (8) X,
= e—yt(Al ik tAz) ...... (9)

Over Damping

Critical Damping

~sv

Ol piiees riedd Sl q \excs G)al\ Jabaill Al ik ¢2 = 4mk s
a3 ga sl 1 Lo A 391 L Jasgh y Ay Sl (55 I (3 i
> c¢? < 4mk (Under Damping)
Here g will be complex; the real part of its value gives an oscillatory
motion.

—cFJc2-amk

1= 2m
pl Pl
T \/(Cz.ﬂ_Mnk.ﬂ) ;
q= 4m?2 a4m?2 ., € . c
2m Y= 2m re= 4m?
2 2 k
—iT 2( ¢ __k B c _k = |—
| —oF f4m (4m2 m) _ —ckam ’(4m2 m> »Wo ’m
q 2m 2m
q= —c+2m+/y2-wq?
2m
2m J

Gz == i +iwy? —y? = —y+iw; Complex Conjugates Roots
where w; = \/wy? — y? is Natural Frequency

g1 =—y+iw;

=~y —iw
The Displacement then:

cx=A, eCYHWLIE L g o(-r=iwy)t
X = e—yt (A+ eiwlt + A e—iwlt)

el =cosut+isinu Euler’s Formula
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X

X

where a =i (A, —A_), b=

Dr. Mokhalad Ali

eV [(iAy —iA_)sinwt+ (A + A_) cosw;t ]

e vt (asinw;t + bcosw;t)

Ay +A_

or x =Ae Ycos(wyt +6p) .......(11)

1 b

where 6, = tan~

A = (a? + b?)1/2

X

i
-
L
—_—_
——

0

Equation (11) shows that the fwo

+Ae~Yt form an envelope of the

takes on values between +1 and -

o g

curves are given by x = +Ae™ "t and x =
curve of motion because the cosine factor

1, including +1 and -1, at which points the

curve of motion touches the envelope. Accordingly, the points of contact are

separated by a time interval of one-half period.

() oidis e Gfied o diani baie Jilaill o0 A Jiad Al ¢2 < 4mk s 3
(e e L) Jilia®s Zaal) 5 2002035 () S5 Lin 4 jall 5 g

Sinid WMe K& x = +4e7 "t x
inie g uay Gl ¢ 1- 5 14 Ly

= +Ae7Vt L (st 35a (11) Aslaall ek
¢ 1- 5 1+ On ai) 1D Al cuall dale oY A< Al

A0 Baa Caeal W jlate duie ) 5 yia (ulatill Jalas Joadii GlIA ¢ SN Ga, CaMall ¢ 48 5al)

Energy Consideration for Damped Harmonic Oscillator

The total energy of the damped harmonic oscillator is given by the sum of the

kinetic and potential energies

By = Ep-+-E;

oA Akl A 3 Jaaciall i) 5l Cyiall 20 50
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Lecture Two: Oscillations Dr. Mokhalad Ali = Mechanics

Et=lm5c2+%kx2 ...... (D

To find fime rate of change of E;, we have to differentiate E; with respect to t:

ABt _ 1, . .d% 1,5, dx

dt 2 dt 2 dat
= mix + kxx

% = (m% + kx)x ... ... (2)

We have the Eq. of motion for the damped harmonic oscillator
mX+cx+kx=0

mx + kx = —cx ... ... (3)

Sub. Eq. 3) in Eq. (2)

. dEx
-

This equation represents the rate at which the energy E; dissipated as frictional

heat by virtue of the viscous resistance to the motion.

Laily Callie haa oo 5 SISEaY) Cann 5 ) ya ) A0SH 28U 2055 Jaee (Jiad Alolaal) o3a

Forced Harmonic Motion (Resonance)
In this section, we study the motion of a damped harmonic oscillator that is
subjected to a periodic driving force by an external agent.
Consider a damped harmonic oscillator motion affected by an external force
(Foxt) that varying as a cosine wave with time t, the angular frequency w and
amplitude (F,) such that 350 & staall Jaaaall a8l gl Qiiall A ja (g y0i s

sl se e M, 550,80 o, Sl 3 Raw &
F,.. = Fycos(wt + 6) ... ... (1) Qo W gn R Ay a5 8 g A1 53 A

F,.. = F, el __ (2) e
e-“‘*l IEL R D L T T

There are three forces attached on the body: )
(—kx) 4_'1).4333“3)5 °

1. Elastic restoring Force = —kx () Medn s s JES: @
2. The viscous damping force = —cx (Foxt) 2235 o
3. External force = F,,; prall e 3 yigall 41K 5 58l 5 S5 agle

EDEN ¢ i) 03] § yana
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So, total force is:
sW—kx —cx + Fopp = mX ... ... (3)
mi + cx + kx = F,,, = Fy e/ W0 (4)
Eq.(4) represent differential damped harmonic oscillator motion affected by an

external force (F,,; ). Suggested solution of this equation as:

x=A ei(wt+9’)
(Fext) Z:IAJBB).Q‘*):\S\:I&;\;:IM

=&
at  dt

x=iAweWt0) = jwx .. (6)

& = @=d_Aei(wt+6)
dt?  dt?

.. - 7 , -

¥ =2 Aw? elWt+0') = 225 = 2y (7)

Sub. Eqns.(5) ,(6) and (7) in Eq. (4).

—mAw2eiWt+0') & Awi ei(Wt+0') 4 | aei(wt+o') — F, ei(wt+0)] * g=i(wt+0")
& —mAwW? + iwcA + kA = F,e'Wt+0) o=i(wt+6’)
—mAw? + iwcA + kA = F, [eVt i e~ e=i0’ |
—mAW? + iwcA + kA = Fye'(0-9")

—mAw? + iwcA + kA = Fy[cos(8 — ') + isin(8 — 8")]
where ¢ = (0 — 0') = Phase dif ference (Phase angle)
Separation between real and imaginary terms, we get:

—mAw?+ kA = Fycos(8 —8") = Fycos ¢

iwcA = iF,sin(6 — 0) =i F,sin ¢

A(k —mw?) = Fycos ¢ ... (8)

cwA = Fysing ... ... 9)

Dividing Eq. (9) on Eq. (8)

cw_ _ Fosing _

= BN e (10)

k-mw?2  Fycos¢
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Lw . £ _y
tan ¢ = g — am Y —
i .
2y w N
stang = 2o (11) "

Squaring and adding Eqns. (8) and (9)
A?(k — mw?)? + c?w?A? = FZ(cos? ¢ + sin? @) = F§ ...... (12)
A? [(k — mw?)? + c?w?] = F¢

P = 0
(k —mw?)? + c2w?
- o .. (13)

— J(k—-mw2)Z+c2w?2

by dividing the numerator and denominator on m

Eo

A= i
k mw2\? c2w?
m m ) m

So, in term of ¥y and w,,

Fo/m

A_

= —_— .. (14) Steady State Oscillation Amplitude
J(wg—wz )2+4y2 w2

Eq. (14) represent the amplitude (A) as a function of the driving frequency (w).
The maximum value of amplitude valid only at (w =w,) (Resonance
Frequency). To find this frequency equal differential amplitude equation by
zero.

(W = Wp) sic b 3ini Lanall (5 poail) Lagll (W) @dlall s jill 2118 (4) Zaad) JicS (14) Aslaa

(050 33 5)
dA Fo/m

d
dw  dw l\/(w(z,—wz)2+4y2w2

_F d 2 272 2. 21—
=i = [wg—=w )" 4y *w*] =

Fo d 4 4 2 s 2. 21—
== — [wg + w*—2w§ w* + 4y“w*“]| 2
mdw[0 0 ¥ ]
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Z—: = % (_71) [wg +w* — 2w w? + 4y2w2]_% [0 + 4w3 — 4wéw + 8y3w]
_Fo (—_1) 4wi-awd w+8y2 w
moA2 i/(wg—wz)2+4y2w2
_-Fo 4 wi3—-4wg w+8y2 w
am 3\/(W§—W2)2+4}'2W2
dA _ -Fo aw3-awg w+8y2w . m
dw  2m 3\/ 2 _‘/‘72)24_4}/2‘/‘}2 2Fgw
dA _ mFy 4w (wi-w§+2y*) _ (wE-wd +2y?)

dw 4mFyw 3\/ (wg—wz)2+4)’2w2 3\/ (Wg—w2)2+4y2w2

da

dw

sw?—wg +2y?% =
w? =wi —2y?

W =2 ... ... (15) Resonant Frequency Equation

where w,. = resonant frequency for maximum amplitude.
In case of weak damping, that is, when ¢ <« 2Vmk ory « w,
Then wy=w,
From Eq. (14) and (15) we can find A,,, 4, 1n Resonant frequency.
w2 =wg-2y%... (16)
2 2y2=wi —wi. .. (17)
Sub. Eq. (16) and (17) 1n Eq. (14)

A s Fo/m
J@rdzray2ong-2r?)

A= Fy/m
J4y4+4y2wg—8y4

A e Fo/m

/4y2w§ —4y*
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Amplitude
X Small damping

Medium damping

Heavy damping

Driving

fy fy 3_/0 f
2
frequency

Another way of designating the sharpness of the resonance peak for the driven

oscillator 1s in terms of the parameter (Q) called Quality Factor of the resonant

system.
ot SV (Q) Jabaall s IR (e (o 5 (5 pmil) iall 015l Al Baa el (g )AT 43y 5k llia
ol e il Jalaa
= Wr
Q= 2y (23)
In the case of weak damping ) Jsladll Al 8
Wo
Q= 2y (24)
The total width Aw at the half energy points 1s approximately
Aw =2y ~ % ...... (25)
w = 2nf
Aw Af ~ 1
L—===— .. 26
wo fo @ (26)
giving the fractional width of the resonance peak, Gl Aadl (5 el G el

Q = 10* [ quartz oscillators |
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