Ministry of Higher Education
Al-Mustaqbal University
College of engineering and technologies
Prosthetics & orthotics Eng. Dept.

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

Lecture No. 6
Linear relation between E,G and

1. Strain

Definition:

Strain is a measure of deformation in a material due to applied stress. It is defined as the ratio of the change in dimension (length, angle, or volume) to the original dimension.

• Formula:

$$\epsilon = rac{\Delta L}{L_0}$$

Where:

 \circ ϵ : Strain (dimensionless)

 $\circ \ \Delta L$: Change in length

 $\circ L_0$: Original length

Types of Strain:

1. Normal Strain:

- o Deformation along the axis of loading (tensile or compressive).
- Example: Stretching a rubber band.

2. Shear Strain:

- Deformation due to tangential forces causing angular distortion.
- Example: Cutting with scissors.

Ministry of Higher Education
Al-Mustaqbal University
College of engineering and technologies
Prosthetics & orthotics Eng. Dept.

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

Example:

A steel rod of length $2\,\mathrm{m}$ is stretched by $0.002\,\mathrm{m}$. Calculate the strain.

Solution:

$$\epsilon = \frac{\Delta L}{L_0} = \frac{0.002}{2} = 0.001$$

2. Hooke's Law

Definition:

Hooke's Law states that for small deformations, the stress (σ) in a material is directly proportional to the strain (ϵ).

• Formula:

$$\sigma = E\epsilon$$

Where:

- $\circ \ \sigma$: Stress (force per unit area, Pa or N/m^2)
- \circ E: Young's modulus (modulus of elasticity, Pa)
- ε: Strain

Key Points:

- Hooke's Law applies only to the **elastic region** of a material (where deformation is reversible).
- Beyond the elastic limit, materials exhibit plastic deformation, and Hooke's Law no longer applies

Example:

A force of $10,000\,\mathrm{N}$ is applied to a steel rod with a cross-sectional area of $0.01\,\mathrm{m}^2$. If Young's modulus for steel is $200\,\mathrm{GPa}$, calculate the strain.

Solution:

$$\sigma = rac{F}{A} = rac{10,000}{0.01} = 1,000,000\,\mathrm{Pa}\,(1\,\mathrm{MPa})$$
 $\epsilon = rac{\sigma}{E} = rac{1,000,000}{200 imes10^9} = 5 imes10^{-6}$

Ministry of Higher Education
Al-Mustaqbal University
College of engineering and technologies
Prosthetics & orthotics Eng. Dept.

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

3. Poisson's Ratio (ν)

Definition:

Poisson's ratio is the ratio of transverse strain to axial strain when a material is subjected to uniaxial stress.

• Formula:

$$u = -\frac{\epsilon_{\mathrm{transverse}}}{\epsilon_{\mathrm{axial}}}$$

Where:

- \circ $\epsilon_{\mathrm{transverse}}$: Strain perpendicular to the applied force
- \circ $\epsilon_{\mathrm{axial}}$: Strain in the direction of the applied force

Key Points:

- Poisson's ratio ranges between 0 and 0.5 for most materials.
- For incompressible materials (e.g., rubber), $\nu=0.5$.

Ministry of Higher Education
Al-Mustaqbal University
College of engineering and technologies
Prosthetics & orthotics Eng. Dept.

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

The **bulk modulus** (K) is a material property that measures its resistance to uniform compression. It quantifies how much a material will compress under an applied external pressure. It is defined as the ratio of **volumetric stress** (pressure) to **volumetric strain** (relative change in volume).

Mathematical Definition

The bulk modulus is given by the formula:

$$K = -V rac{\Delta P}{\Delta V}$$

Where:

- K: Bulk modulus (units: Pascals, Pa)
- ullet V: Original volume of the material
- ΔP : Change in pressure (applied stress)
- ΔV : Change in volume (volumetric strain)

Volumetric Strain

Volumetric strain (ϵ_v) is the relative change in volume due to applied pressure:

$$\epsilon_v = rac{\Delta V}{V}$$

Thus, the bulk modulus can also be written as:

$$K = -\frac{\Delta P}{\epsilon_v}$$

Key Points About Bulk Modulus

- 1. Units:
 - The SI unit of bulk modulus is Pascals (Pa) or Gigapascals (GPa).
 - $\circ 1 \text{ GPa} = 10^9 \text{ Pa}.$
- 2. Physical Meaning:
 - o A high bulk modulus means the material is less compressible (e.g., solids like steel).
 - o A low bulk modulus means the material is more compressible (e.g., gases).

Ministry of Higher Education
Al-Mustaqbal University
College of engineering and technologies
Prosthetics & orthotics Eng. Dept.

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

2^{nd} semester (2024-2025)

5. Linear Relationship Between E, G, and ν

For isotropic materials, the elastic constants E (Young's modulus), G (shear modulus), and ν (Poisson's ratio) are related as follows:

1. Relationship between E, G, and ν :

$$G = rac{E}{2(1+
u)}$$

- \circ This equation shows how the shear modulus G depends on Young's modulus E and Poisson's ratio u.
- 2. Relationship between E, G, and ν (alternative form):

$$E = 2G(1 + \nu)$$

- \circ This equation expresses Young's modulus E in terms of the shear modulus G and Poisson's ratio u.
- 3. Relationship between E, K (bulk modulus), and ν :

$$E = 3K(1 - 2\nu)$$

Ministry of Higher Education
Al-Mustaqbal University
College of engineering and technologies
Prosthetics & orthotics Eng. Dept.

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

Example 1: Calculating Shear Modulus (G)

Given:

- \circ Young's modulus (E) for steel: $E=200\,\mathrm{GPa}$
- \circ Poisson's ratio (u) for steel: u=0.3

• Find:

 \circ Shear modulus (G) for steel.

Solution:

Using the relationship:

$$G=rac{E}{2(1+
u)}$$

Substitute the values:

$$G = rac{200\, ext{GPa}}{2(1+0.3)} = rac{200}{2.6} pprox 76.92\, ext{GPa}$$

Answer:

The shear modulus of steel is approximately $76.92\,\mathrm{GPa}$.

Ministry of Higher Education	
Al-Mustaqbal University	
College of engineering and technologies	
Prosthetics & orthotics Eng. Dept.	

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

Example 2: Calculating Poisson's Ratio (ν)

- Given:
 - \circ Young's modulus (E) for aluminum: $E=70\,\mathrm{GPa}$
 - \circ Shear modulus (G) for aluminum: $G=26\,\mathrm{GPa}$
- Find:
 - Poisson's ratio (ν) for aluminum.
- Solution:

Using the relationship:

$$G = rac{E}{2(1+
u)}$$

Rearrange to solve for ν :

$$\nu = \frac{E}{2G} - 1$$

Substitute the values:

$$\nu = \frac{70}{2 \times 26} - 1 = \frac{70}{52} - 1 \approx 1.346 - 1 = 0.346$$

Example 3: Calculating Young's Modulus (E)

- Given:
 - Shear modulus (G) for rubber: $G = 0.001 \, \mathrm{GPa}$
 - \circ Poisson's ratio (u) for rubber: u=0.5 (incompressible material)
- Find:
 - \circ Young's modulus (E) for rubber.
- Solution:

Using the relationship:

$$E = 2G(1 + \nu)$$

Substitute the values:

$$E = 2 \times 0.001 \times (1+0.5) = 0.002 \times 1.5 = 0.003\,\mathrm{GPa}$$

Ministry of Higher Education	
Al-Mustaqbal University	
College of engineering and technologies	
Prosthetics & orthotics Eng. Dept.	

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Data	//2025

Example 4: Calculating Bulk Modulus (K)

- Given:
 - \circ Young's modulus (E) for glass: $E=70\,\mathrm{GPa}$
 - $\circ~$ Poisson's ratio (u) for glass: u=0.2
- Find:
 - \circ Bulk modulus (K) for glass.
- Solution:

Using the relationship:

$$E = 3K(1 - 2\nu)$$

Rearrange to solve for K:

$$K = rac{E}{3(1-2
u)}$$

Substitute the values:

$$K = rac{70}{3(1-2 imes 0.2)} = rac{70}{3(1-0.4)} = rac{70}{3 imes 0.6} = rac{70}{1.8} pprox 38.89\,\mathrm{GPa}$$