

Al-Mustaqbal University

College of Science

Artificial Intelligence Sciences Department

Knowledge Representation Methods

Lecture 2

Propositional Logic

By Asst. Lect. Ali Al-khawaja

Introduction to Propositional Logic

✤ What is Logic?

- Logic is the discipline that deals with the methods of reasoning.
- On an elementary level, logic provides rules and techniques for determining whether a given argument is valid.
- Logical reasoning is used in mathematics to prove theorems.

Introduction to Propositional Logic

- The basic building blocks of logic is **Proposition**
- A proposition (or statement) is a **declarative sentence** that is either **true** or **false**, but **not both**.
- The area of logic that deals with propositions is called **propositional logics**.

Examples:

Propositions	Truth value		
2 + 3 = 5	True		
5 - 2 = 1	False		
Today is Friday	False		
x + 3 = 7, for $x = 4$	True		
Cairo is the capital of Egypt	True		

Sentences	Is a Proposition
What time is it?	Not propositions
Read this carefully.	Not propositions
x + 3 = 7	Not propositions

Introduction to Propositional Logic

- We use letters to denote propositional variables q, r, s,
 t, ...
- The truth value of a proposition is true, denoted by **T**, if it is a true proposition and false, denoted by **F**, if it is a false proposition.

• Compound Propositions are formed from existing propositions using logical operators.

Negation

DEFINITION 1

Let *p* be a proposition. The *negation of p*, denoted by $\neg p$ (also denoted by \overline{p}), is the statement "It is not the case that *p*."

The proposition $\neg p$ is read "not *p*." The truth value of the negation of *p*, $\neg p$, is the opposite of the truth value of *p*.

Example: Solution

Find the negation of the proposition *p*: "Cairo is the capital of Egypt"

The negation is

 $\neg p$: "It is not the case that Cairo is the capital of Egypt"

This negation can be more simply expressed as

 $\neg p$: "Cairo is not the capital of Egypt"

Example: Solution

Find the negation of the proposition *p*: "Cairo is the capital of Egypt"

The negation is

 $\neg p$: "It is not the case that Cairo is the capital of Egypt"

This negation can be more simply expressed as

 $\neg p$: "Cairo is not the capital of Egypt"

Truth Table

• Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

DEFINITION 2

Let *p* and *q* be propositions. The *conjunction* of *p* and *q*, denoted by $p \land q$, is the proposition "*p* and *q*." The conjunction $p \land q$ is true when both *p* and *q* are true and is false otherwise.

Example

- *p*: Today is Friday.
- *q*: It is raining today.
- $p \land q$: Today is Friday and it is raining today.

TABLE 2	The Truth Table for
the Conju	nction of Two
Propositio	ons.

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

DEFINITION 3

Let *p* and *q* be propositions. The *disjunction* of *p* and *q*, denoted by $p \lor q$, is the proposition "*p* or *q*." The disjunction $p \lor q$ is false when both *p* and *q* are false and is true otherwise.

Example

- *p*: Today is Friday.
- *q*: It is raining today.
- $p \lor q$: Today is Friday or it is raining today.

TABLE 3 The Truth Table for the Disjunction of Two Propositions.				
р	q	$p \lor q$		
Т	Т	Т		
Т	F	Т		
F	Т	Т		
F	F	F		

DEFINITION 4

Let p and q be propositions. The *exclusive or* of p and q, denoted by $p \oplus q$ (or $p \operatorname{XOR} q$), is the proposition that is true when exactly one of p and q is true and is false otherwise.

Example

- p: They are parents.
- q: They are children.
- $p \oplus q$: They are parents or children but not both.

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.				
р	q	$p \oplus q$		
Т	Т	F		
Т	F	Т 🗲		
F	Т	Т 🛶		
F	F	F		

DEFINITION 5

Let p and q be propositions. The *conditional statement* $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q$, p is called the hypothesis (or antecedent or premise) and q is called the *conclusion* (or *consequence*).

```
"if p, then q"
"if p, q"
"p is sufficient for q"
"q if p"
"q when p"
"a necessary condition for p is q"
"." q unless \neg p"
```


 TABLE 5
 The Truth Table for
 the Conditional Statement р

$$p \rightarrow q$$
.

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

"p implies q" "p only if q" "a sufficient condition for q is p" "q whenever p" "q is necessary for p" "q follows from p"

EXAMPLE 1

"If you get 100% on the final, then you will get an A."

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not get 100% you may or may not receive an A depending on other factors. However, if you do get 100%, but the professor does not give you an A, you will feel cheated.

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

"If Maria learns discrete mathematics, then she will find a good job."

"Maria will find a good job when she learns discrete mathematics."

EXAMPLE 3

"If today is Friday, then 2 + 3 = 6."

is true every day except Friday, even though 2 + 3 = 6 is false.

DEFINITION 6

Let *p* and *q* be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "*p* if and only if *q*." The biconditional statement $p \leftrightarrow q$ is true when *p* and *q* have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

"*p* is necessary and sufficient for *q*" "if *p* then *q*, and conversely" "*p* iff *q*." "*p* exactly when *q*."

"You can take the flight if and only if you buy a ticket."

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.				
р	q	$p \leftrightarrow q$		
Т	Т	Т 🔶	_	
Т	F	F		
F	Т	F		
F	F	T 🔶		

EXAMPLE 1

Construct the truth table of the compound proposition $(p \lor \neg q) \rightarrow (p \land q).$

TAB	TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.					
p	9	-7 q	$p \lor \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$	
Т	Т	F	Т	Т	Т	
Т	F	Т	Т	F	F	
F	Т	F	F	F	Т	
F	F	Т	Т	F	F	

Precedence of Logical Operators

TABLE 8 Precedence of Logical Operators.				
Operator Precedence				
7	1			
^ V	2 3			
$\rightarrow \leftrightarrow$	4 5			

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$

example 2

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
Т	Т	Т	F		
Т	Т	F	F		
Т	F	Т	Т		
Т	F	F	Т		
F	Т	Т	F		
F	Т	F	F		
F	F	Т	Т		
F	F	F	Т		

example 2

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
Т	Т	Т	F	F	
Т	Т	F	F	F	
Т	F	Т	Т	Т	
Т	F	F	Т	Т	
F	Т	Т	F	F	
F	Т	F	F	F	
F	F	Т	Т	F	
F	F	F	Т	F	

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
Т	Т	Т	F	F	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	F	F	Т
F	Т	F	F	F	Т
F	F	Т	Т	F	Т
F	F	F	Т	F	Т

Logic and Bit Operations

• Computers represent information using bits. A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).

Truth Value	Bit
Т	1
F	0

Computer Bit Operations

• We will also use the notation OR, AND, and XOR for the operators V, Λ , and \bigoplus , as is done in various programming languages.

TABLE 9 Table for the Bit Operators <i>OR</i> , <i>AND</i> , and <i>XOR</i> .					
x	у	$x \lor y$	$x \wedge y$	$x \oplus y$	
0	0	0	0	0	
0	1	1	0	1	
1	0	1	0	1	
1	1	1	1	0	

Bit Strings

• Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

A *bit string* is a sequence of zero or more bits. The *length* of this string is the number of bits in the string.

101010011 is a bit string of length nine.

• Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and 11 0001 1101

01 1011 0110 11 0001 1101

1110111111bitwise OR0100010100bitwise AND1010101011bitwise XOR