

Al-Mustaqbal University Collage of Engineering Prosthetics and Orthotics Engineering First Stage

PHYSICS OF MATERIALS Asst. Lec. Muntadher Saleh Mahdi Ist term – Lecture I

2024-2025

Muntadher.saleh.mahdi@uomus.edu.iq UOMU013024

Classification of Materials

• •

Solid materials are categorized into three main types based on their chemical makeup and atomic structure:

Metals

Most materials fall into one of these categories.

There are also **composites**, which are combinations of two or more of these material types.

- Composed of one or more metallic elements (e.g., iron, aluminum, copper) and sometimes small

amounts of nonmetallic elements (e.g., carbon, oxygen).

- Atoms are bonded together in a crystalline structure.

Characteristics:

- Stiff, strong, and resistant to fracture.
- Ductile (can deform without breaking).
- High thermal and electrical conductivity.
 - High density and weight.
 - Low porosity compared to ceramics.

Contain iron.

Examples: Steel, wrought iron, cast iron.

Typically, magnetic.

Nonferrous Metals:

Do not contain iron.

Examples: Aluminum, copper, brass.

Typically, non-magnetic.

Less prone to corrosion due to protective oxide layer.

- Commonly oxides, nitrides, and carbides.

- Examples: Aluminum oxide (Al2O3), silicon carbide (SiC), porcelain, cement, and glass.

Atomic Arrangement:

Atoms can be arranged in crystal, semi-crystal, or amorphous (non-crystalline) structures.

Characteristics:

Ceramics:

• Stiff

Moderately strong

Not tough

Good insulator

Poor heat conductor

Heat resistant

Handles temperature changes

Corrosion resistant

Monomer: The small, repeating unit that makes up a polymer.

Polymerization: The chemical process where monomers combine to form a polymer with a high molecular weight.

In essence, polymers are big molecules made up of smaller repeating units (monomers), and the process of forming these large molecules is called polymerization.

Based on Source

Natural Polymers: Found in nature (plants and animals). Examples: proteins, resins, rubber.

Semi-Synthetic Polymers: Modified natural polymers. Examples: starch, silicones.

Synthetic Polymers: Made in labs through polymerization. Examples: nylon, polyethylene, synthetic rubber, PVC, Teflon.

Based on Structure

Linear Polymers: Long, straight chains. High density and strength. Examples: polyethylene, PVC, nylon.

Branched Polymers: Long chains with side chains. Lower density and strength. Example: polypropylene.

Cross-Linked Polymers: 3D network structures. Hard, rigid, brittle. Example: rubber.

Ladder Polymers: Two linear polymers linked like a ladder. More rigid.

Based on Structure

Fig.1 Different molecular chain configurations: (a) linear, (b) branched, (c) crosslinked,(d) ladder

Based on Molecular Forces

Thermoplastic Polymers:

- Intermediate intermolecular forces
- Soften on heating, harden on cooling
- Linear or branched, can be recycled
 - Examples: Polyethylene

Thermosetting Polymers:

- Hard and infusible on heating
- Cannot be softened or remolded
- Cross-linked or heavily branched, not recyclable
 - Example: Silicone

