

SubjectStrength of MaterialsStageSecond stageLecturerDr. Mujtaba A. FlayyihCodeUOMU013043

2nd semester (2024-2025)

Lecture No. 3 Deflection of the beam

Introduction

When we consider designing beams based on rigidity consideration the deflection of the beam must be known at specific or critical location. Several methods are available for determining beam deflection. Although based on the same principles, they differ in technique and in their immediate objective.

Methods of Determining Beam Deflections

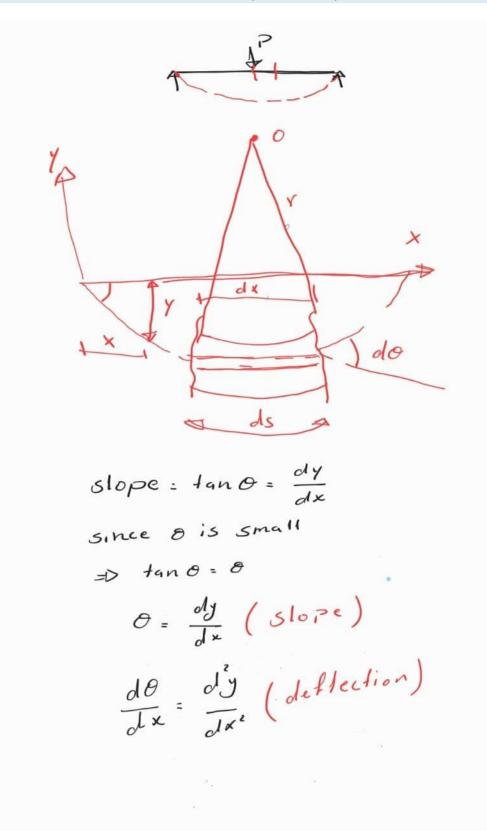
Numerous methods are available for the determination of beam deflections. These methods include:

- Double-integration method
- Area-moment method
- Strain-energy method (Castigliano's Theorem)
- Conjugate-beam method
- Method of superposition

Double-integration method

The double integration method is a powerful tool in solving deflection and slope of a beam at any point because we will be able to get the equation of the elastic curve. *The double integration method can be used if the moment* (M) *has a single expression for the whole beam.*

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043



SubjectStrength of MaterialsStageSecond stageLecturerDr. Mujtaba A. FlayyihCodeUOMU013043

The differential length of the
strip ds can be expressed in
terms of radius of curvature

$$dS = r \star d\theta$$

$$= \frac{1}{r} = \frac{d\theta}{ds} \approx \frac{d\theta}{dx} \qquad (1)$$
because the deflection of the
beam is very small
(ds \approx dx)
From the basic law of bending

$$\frac{M}{I} = \frac{\sigma_b}{Y} = \frac{E}{r}$$

$$= \frac{M}{I} = \frac{E}{r}$$

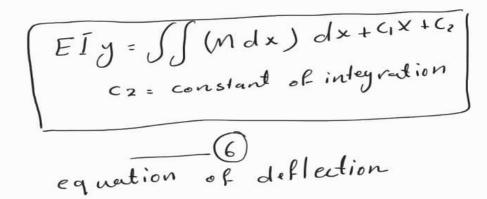
$$= \frac{M}{I} \approx \frac{E}{r}$$

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

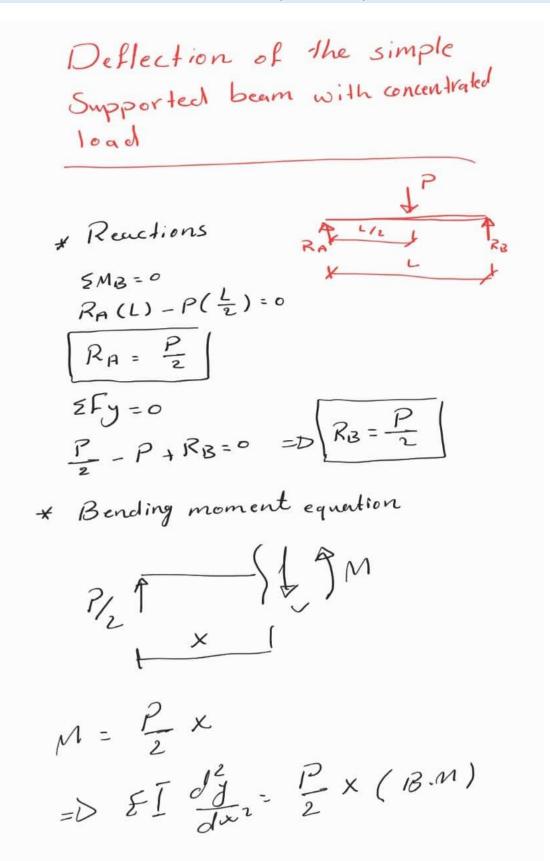
since
$$\frac{d\theta}{dx} = \frac{d^2y}{dx^2}$$

 $\Rightarrow \frac{d^2y}{dx^2} = \frac{M}{EI}$
 $\Rightarrow EI \frac{d^2y}{dx^2} = M - 4$
equation of bending
by differiation of eq. (4)
we get the slope of the
beam
 $\Rightarrow EI \frac{dy}{dx} = \int M dx + C$
 $c = constant of integration$
equation of slope (5)
another differiention of the
equation (5), we get the
deflection of beam

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043



Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043



Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

$$EI \frac{dY}{dx} = \frac{P}{4} x^{2} + C_{1}(\delta | ope)$$

$$EI \frac{dY}{dx} = \frac{P}{4} x^{2} + C_{1}(\delta | ope)$$

$$EI \frac{dY}{dx} = \frac{P}{12} x^{3} + C_{1}x + C_{2}$$

$$(deflection)$$

$$Boundary condition$$

$$ot x = 0 \Rightarrow Y = 0$$

$$= D C_{2} = 0$$

$$ot x = \frac{L}{2} = D \frac{dY}{dx} = 0$$

$$o = \frac{P}{4} (\frac{L}{2})^{2} + C_{1}$$

$$= D \frac{C_{1}}{C_{1}} = \frac{-PL^{2}}{16}$$

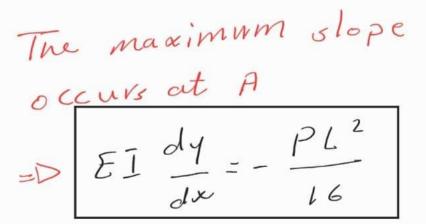
$$= D The \sigma | ope equation$$

$$\left(\frac{FI}{dx} = \frac{P}{4} x^{2} - \frac{PL^{2}}{16}\right)$$

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

2nd semester (2024-2025)

The deflection equation $y = \frac{P x^3}{12} - \frac{P L^2}{16}(x)$



The maximum deflection occurs at centre of the beam $(\chi = \frac{L}{2})$

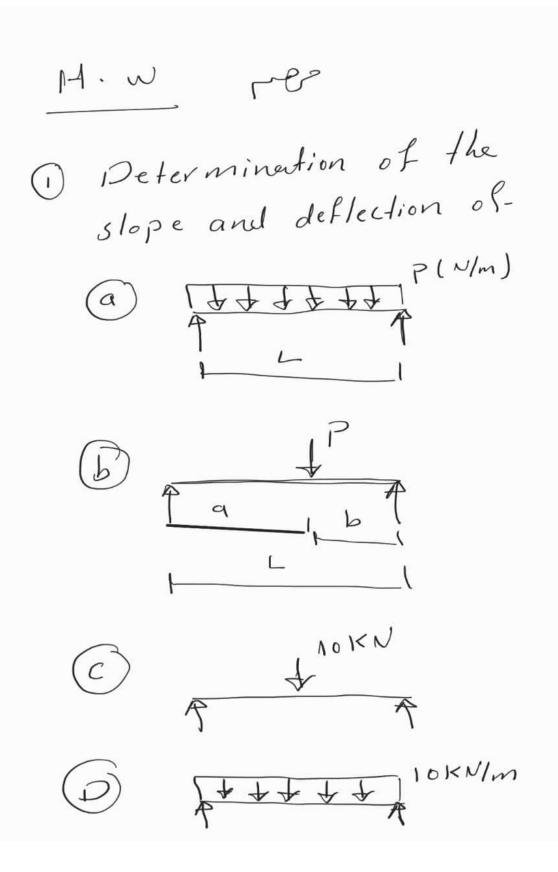
$$= D$$

$$EI y = \frac{P}{12} \left(\frac{L}{2}\right)^3 - \frac{PL^2}{16} \left(\frac{L}{2}\right)$$

$$= \frac{PL^3}{16} \left(\frac{L}{2}\right)$$

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

2nd semester (2024-2025)

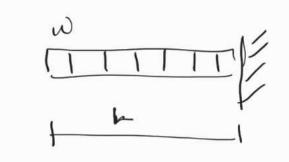


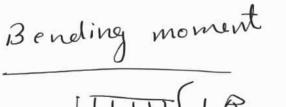
Page 9 of 13

SubjectStrength of MaterialsStageSecond stageLecturerDr. Mujtaba A. FlayyihCodeUOMU013043

2nd semester (2024-2025)

Deflection & slope of-Cantilever beam with disturbuted load





$$M = -\frac{\omega x^2}{z}$$

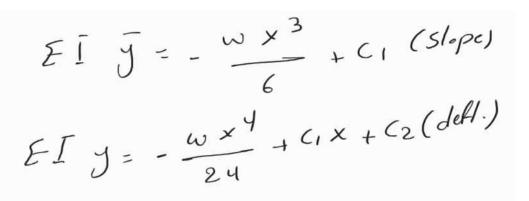
$$W = -\frac{\omega x^2}{z}$$

$$= \mathcal{D} \mathcal{E} \tilde{I} \tilde{Y} = - \frac{\mathcal{W} X}{2} (\mathcal{B} \cdot \mathcal{M})$$

Page 10 of 13

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

2nd semester (2024-2025)



 $B \cdot C$ $at x = L \rightarrow \bar{y} = 0$ $C = -\frac{\omega L^3}{6} + c_1$ $C_1 = -\frac{\omega L^3}{6}$

at
$$w = L = 2 Y = 0$$

$$o = -\frac{wL^{4}}{24} + \frac{wL^{3}}{6}L + C_{p}$$

$$= 24 - \frac{wL^{4}}{6}$$

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

2nd semester (2024-2025)

$$\hat{e} = \frac{-\omega x^3}{6} + \frac{\omega L^3}{6}$$

$$EIy = -\frac{wx^{4}}{24} + \frac{wL^{3}}{6}x - \frac{wL^{4}}{8}$$

e

Subject	Strength of Materials
Stage	Second stage
Lecturer	Dr. Mujtaba A. Flayyih
Code	UOMU013043

