

Al-Mustaqbal University (الاجهزة الطبية) Department (الرابعة) (الرابعة) Subject (نظم الليزر الطبية) (أ.د علاء حسين علي) Lecturer (

Avalanche Photodiode (APD) Lecture Notes

1. Introduction to Photodiodes

1.1 Basics of Photodetection

- Photodiodes are semiconductor devices that convert light into an electrical current.
- The primary types of photodiodes: PIN photodiodes and Avalanche Photodiodes (APDs).

1.2 Differences Between PIN Photodiodes and APDs

- PIN Photodiodes: Operate with low reverse bias, rely on external amplification.
- APDs: Use high reverse bias to achieve internal gain via avalanche multiplication.

Al-Mustaqbal University (الاجهزة الطبية) (الرابعة) Class (الرابعة) Subject (نظم الليزر الطبية) (أ.د علاء حسين علي) Lecturer (

2. Working Principle of APDs

2.1 Avalanche Multiplication Mechanism

- Photogenerated carriers (electrons and holes) accelerate under high electric fields.
- These carriers collide with the crystal lattice, generating additional electronhole pairs (impact ionization).
- This results in an internal gain mechanism, enhancing the detector's sensitivity.

2.2 Impact Ionization Process

The multiplication factor (M) determines the gain of the APD and is given by:

$$M=rac{1}{1-\int_0^w lpha(x)dx}$$

where $\alpha(x)$ is the ionization coefficient and w is the depletion width.

 The excess noise factor (F) represents noise generated due to stochastic avalanche multiplication and is given by:

$$F=kM+(1-k)(2-\frac{1}{M})$$

where k is the ratio of hole to electron ionization coefficients.

3. APD Structure and Materials

3.1 APD Semiconductor Materials

Silicon (Si) APDs: Used in visible and near-infrared (NIR) applications.

Al-Mustaqbal University (الاجهزة الطبية) Department (الرابعة) (الرابعة) Subject (نظم الليزر الطبية) Lecturer (أ.د علاء حسين علي) 2ndterm – Lect. (Avalanche photo diode (APD))

- Indium Gallium Arsenide (InGaAs) APDs: Used for telecom applications (1.3-1.6 μm).
- Germanium (Ge) APDs: Suitable for longer-wavelength applications (>1.6 μm).

3.2 APD Device Structure

- Typical layers: absorption layer, multiplication layer, and p-n junction.
- · Electric field distribution optimized for impact ionization.

Detailed Block Diagram of APD Working

Al-Mustaqbal University (الاجهزة الطبية) Department (الرابعة) Class (نظم الليزرالطبية) Subject (أ.د علاء حسين علي) Lecturer

2ndterm – Lect. (Avalanche photo diode (APD))

4. APD Characteristics

4.1 Key Parameters

- Quantum Efficiency (QE): Probability of a photon generating an electronhole pair.
- Responsivity (R): Ratio of photocurrent to incident optical power, given by:

$$R = rac{M \cdot \eta \cdot q}{h
u}$$

where η is the quantum efficiency, q is the electron charge, h is Planck's constant, and ν is the photon frequency.

- Gain (M): Internal amplification factor due to avalanche multiplication.
- Breakdown Voltage (V_br): The voltage at which uncontrolled avalanche breakdown occurs.

4.2 APD Noise and Signal-to-Noise Ratio (SNR)

- · Shot Noise: Due to random arrival of photons and carriers.
- · Thermal Noise: Johnson-Nyquist noise from resistive elements.
- Multiplication Noise: Excess noise due to randomness in impact ionization.

5. APD Applications

5.1 Optical Communication

Used in fiber-optic receivers due to high sensitivity and fast response time.

Al-Mustaqbal University (الاجهزة الطبية) (الرابعة) Class (الرابعة) Subject (نظم الليزر الطبية) (أ.د علاء حسين علي) Lecturer (

5.2 LIDAR (Light Detection and Ranging)

 Used in autonomous vehicles and remote sensing for high-speed distance measurement.

5.3 Single-Photon Detection

 Single-Photon Avalanche Diodes (SPADs) are specialized APDs used in quantum optics.

5.4 Medical Imaging

 Positron Emission Tomography (PET) uses APDs for detecting gamma-ray photons.

6. APD Biasing and Circuit Design

6.1 Reverse Bias Voltage Control

6.1 Reverse Bias Voltage Control

- APDs require stable high voltage (tens to hundreds of volts) to operate below breakdown.
- Temperature-dependent gain variation must be compensated.

6.2 Readout Electronics

- Transimpedance amplifiers (TIAs) convert photocurrent into a voltage signal.
- Low-noise preamplifiers are required to minimize SNR degradation.