

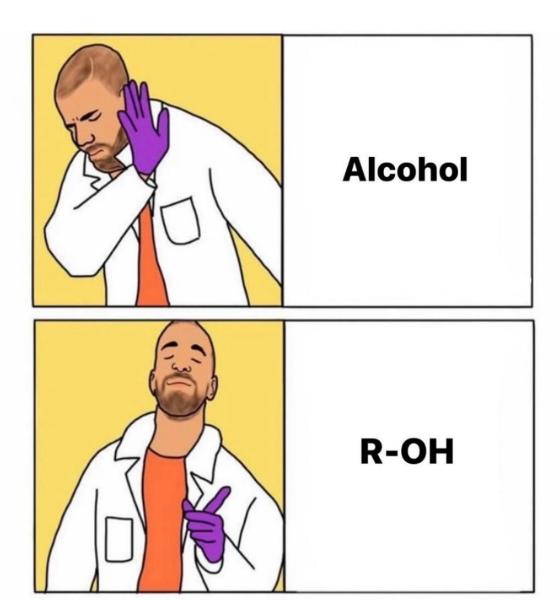
جامعة المستقبل AL MUSTAQBAL UNIVERSITY كليحصة العالصوم

Organic Chemistry

2nd stage

Asst. Lect.Zahraa Hazim Hamid

Lecture 5: Alcohol


Department of Bio chemistry

Introduction of ALcohol

What are Alcohols?

Organic compounds containing a hydroxyl (-OH) group attached to a carbon atom.

 General formula: R-OH (where R is an alkyl or aryl group).

Alkyl Group

 alkyl group is a chemical group derived from alkanes by removing one hydrogen atom. It is hydrophobic and nonpolar, typically represented by the symbol R-.

General Formula of Alkyl Groups:

- If the parent alkane has the formula C_nH_{2n+2} ,
- alkyl group will have the formula C_nH_{2n+1} after the removal of one hydrogen atom.
- Examples of Common Alkyl Groups:
- Alkane Name Derived Alkyl Group Chemical Formula
- Methane (CH₄) Methyl -CH₃
- Ethane (C₂H₆) Ethyl -C₂H₅
- Propane (C₃H₈) Propyl -C₃H₇

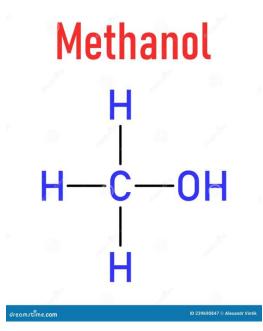
Aryl Group

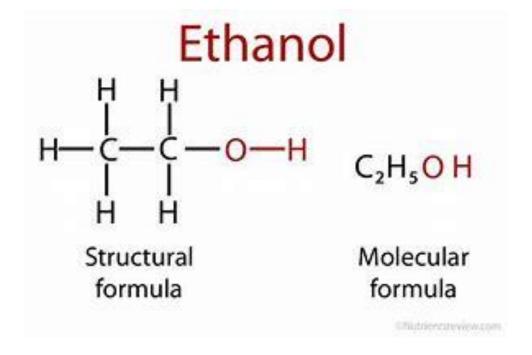
- aryl group is a group derived from arenes (aromatic compounds) by removing one hydrogen atom from the aromatic ring, allowing it to bond with other molecules. It is typically represented by the symbol Ar-.
- Examples of Common Aryl Groups:
- Aromatic Compound Derived Aryl Group Chemical Formula
- Benzene (C₆H₆) Phenyl -C₆H₅
- Toluene (C₆H₅CH₃) Benzyl -C₆H₅CH₂

Alkyl Groups

— CH_3 , Methyl, Me—

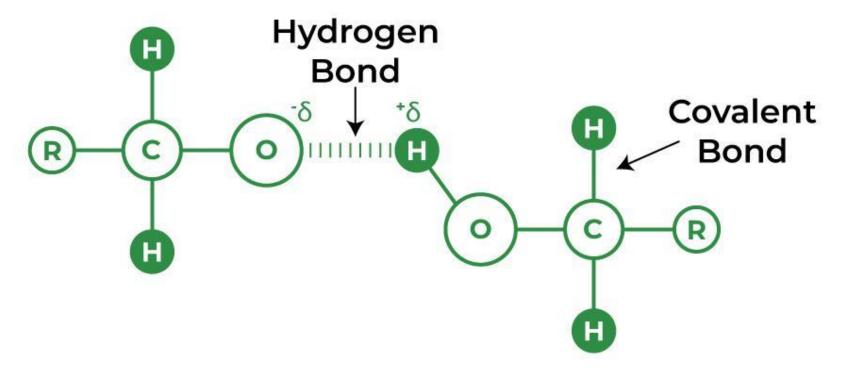
---C₂H₅, Ethyl, Et----

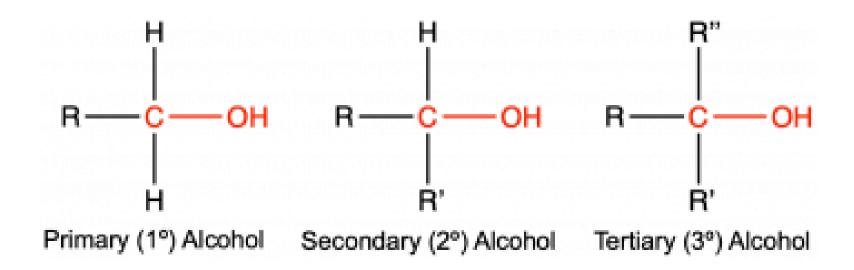

— C₃H₇, Propyl, Pr—


Aryl Groups

 $---C_6H_5$, Phenyl, Ph----

• Examples:


- Methanol (CH₃OH)
- 2. Ethanol (C₂H₅OH)

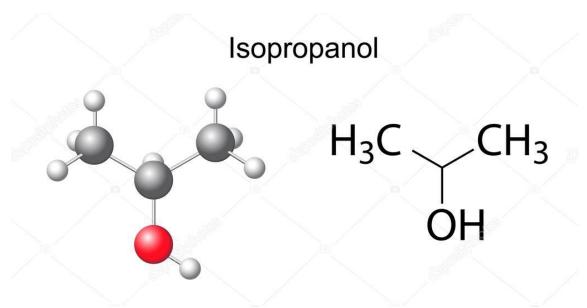

Structure of Alcohols

- The -OH group is polar due to the electronegativity difference between oxygen and hydrogen.
- The carbon attached to -OH is sp³ hybridized.

Hydrogen Bonding in Alcohols

Classification of Alcohols

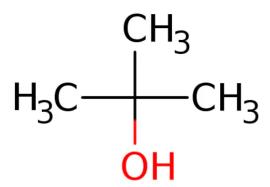
Primary (1°) Alcohols:


The -OH group is attached to a carbon bonded to only one other carbon.

Example: Ethanol (CH₃CH₂OH).

2- Secondary (2°) Alcohols:

 The -OH group is attached to a carbon bonded to two other carbons.


Example: Isopropanol (CH₃CHOHCH₃).

3- Tertiary (3°) Alcohols:

The -OH group is attached to a carbon bonded to three other carbons.

Example: tert-Butanol [(CH₃)₃COH].

Physical Properties of Alcohols

1. Boiling Points:

Higher than alkanes due to hydrogen bonding.

2. Solubility:

Small alcohols (e.g., methanol, ethanol) are soluble in water.

Solubility decreases as the carbon chain length increases.

Uses of Alcohols

1- Industrial Uses:

Solvents, fuels, antifreeze, and disinfectants.

2- Biological Importance:

• Ethanol in medicine methanol in labs.

Toxicity of Alcohols

1. Methanol:

Highly toxic; can cause blindness or death.

2. Ethanol:

Safe in small amounts but toxic in large quantities.