

# كلية العلوم قسم الادلة الجنائية

# REAL AND COMPLEX NUMBERS

# **Mathematics**

المرحلة الاولى

م.م ريام ثائر احمد

المحاضرة الاولى

### REAL AND COMPLEX NUMBERS

# **Real number representation**

Real number represent graphically in one dimension (either horizontal or vertical) as shown.

Due to *Quadratic* Algebric Equation;

$$ax^2 + bx + C = 0$$

The solution will be  $_1$  and  $x_2$ . The square root of  $(\sqrt{b^2 - 4ac})$  may be ( posative , negative or zero ).

The *negative* value will be expressed as (complex number)

## **Complex Numbers represent by:**

### 1. Rectangular coordinate representation

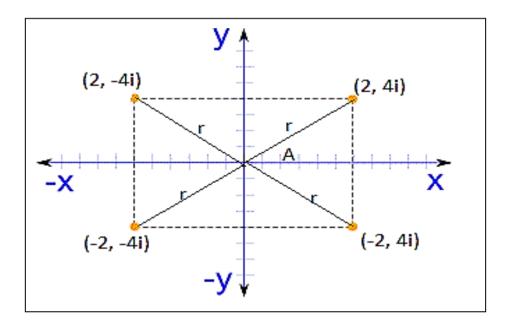
$$z = x + iy \implies \text{ as a point with } (x, y)$$

$$x \text{ and } y \text{ are real numbers.}$$

$$x \text{ are the real part of } x = Re(z)$$

$$y \text{ are the imaginary part of } z \implies y = Im(z)$$

Argand Plane or Complex Plane



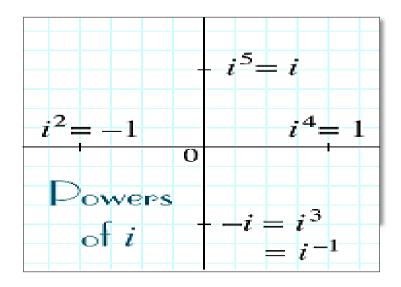
# **4** Complex unit

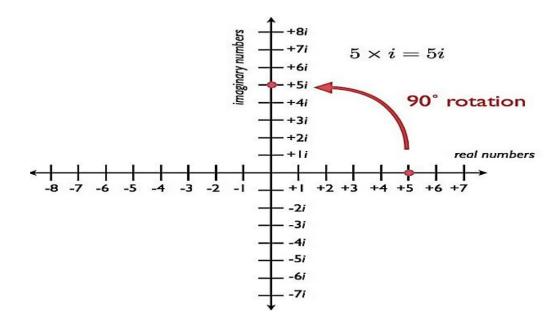
Now,

$$i = \sqrt{-1}$$
$$i^2 = -1$$

$$i^5 = i^2$$
.  $i^2$ .  $i = (i^2)^2$ .  $i = (-1)^2$ .  $i = +i$ 

$$i^{101} = (i^2)^{50}$$
.  $i = (-1)^{50}$ .  $i = +i$ 





# 2. **Polar** coordinate representation

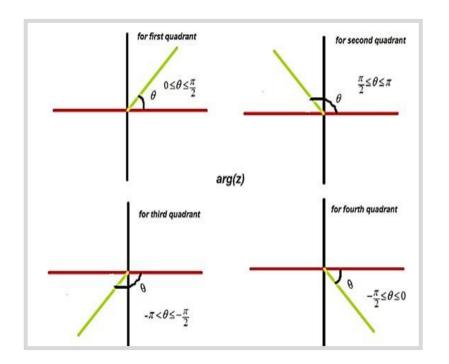
$$z = re^{i\theta}$$
 specified by  $(r, \theta)$  
$$z = [cos\theta + isin\theta]$$
 specified by  $(r, \theta)$  known as Euler's formula 
$$z = r \angle \theta$$

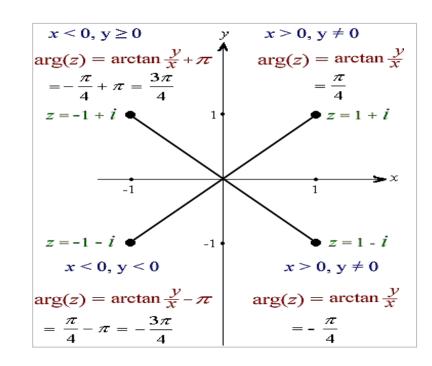
• Length of 
$$z$$
  
• Amplitude  $z$   
• Modulus  $z$   
• Absolute value

 $r$  is the "radius of circle" centered at orign.

 $\theta$  is called 'angle" or , "argument' or 'phase" represent the direction of Z and can be evaluated by :

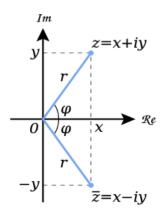
$$\theta = tan^{-1}(\frac{y}{x})$$

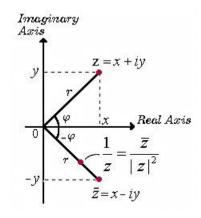


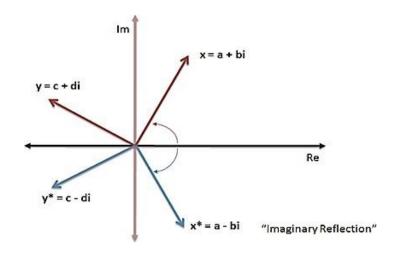


Complex conjugate of z Represented by  $\bar{z}$  or  $z^*$ 

$$\bar{z} = x - iy \implies as \ a \ point \ with \ (x, -y)$$







### Inflection of z

$$-z = -x - iy \implies as a point with (-x, -y)$$

#### Absolute value of z

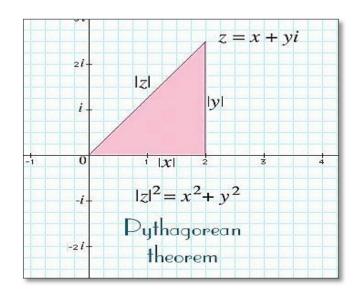
Also called,  $\bullet$  Length of z

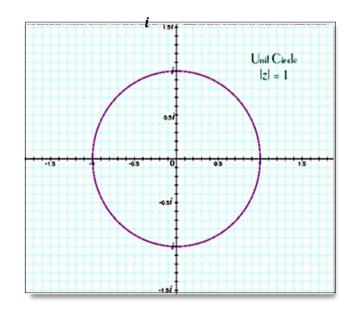
- Amplitude z
- Modulus z

$$|z| = \sqrt{x^2 + y^2} = r$$

r is the "radius of circle"

<u>centered</u> at (x, y).





**4** Distance between  $z_1$  and  $z_2$ 

Represented by  $|z_1 - z_2|$  and given by:

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

 $\bot$  Power of z

$$Or$$
,

$$z^n = r^n e^{(in\theta)}$$

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

"De Moivers theorem"

### **PASCAL TRIANGLE**

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = 1a + 1b$$

$$(a+b)^{2} = 1a^{2} + 2ab + 1b^{2}$$

$$(a+b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + 1b^{3}$$

$$(a+b)^{4} = 1a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + 1b^{4}$$

 $\blacksquare$  Roots of z

$$z^{1/n} = r^{1/n} \left[ \cos \left( \frac{+2k\pi}{n} \right) + i \sin \left( \frac{\theta + 2k\pi}{n} \right) \right], \quad k = 0, 1, 2, 3, \dots, (n-1)$$

 $z_0$ ,  $z_1$ ,  $z_2$  ... the roots of z

### **COMPLEX NUMBERS**

### **Examples**

1. Verify

a) 
$$(\sqrt{2} - i) - i(1 - \sqrt{2}i) = -2i$$

b) 
$$\left(\frac{1+2i}{3-4i}\right) + \left(\frac{2-i}{i}\right) = \frac{-2}{5}$$

$$\Rightarrow \frac{1+2i}{3-4i} * \frac{3+4i}{3+4i} + \frac{2-i}{5i} * \frac{-5i}{-5i}$$

$$= \boxed{\frac{3+4i+6i-8}{25} = \frac{-1}{5} - \frac{2i}{5}}$$

c) 
$$\frac{5}{(1-i)(2-i)(3-i)} = \frac{1}{2} i$$

$$\frac{5}{(1-i)(2-i)(3-i)} = \frac{5}{(1-3i)(3-i)} = \frac{5}{3-i-9i-3} = \frac{5}{-10i} = \frac{-i}{2i^2}$$
$$= +\frac{i}{2} \text{ since } i^2 = -1$$

2. Simplify 
$$\left(\frac{1}{2-3i}\right)\left(\frac{1}{1+i}\right)$$

### Solution:

$$\left(\frac{1}{2-3i}\right)\left(\frac{1}{1+i}\right) = \frac{1}{2+3-3i+2i} = \frac{1}{5-i} * \frac{5+i}{5+i} = \frac{5+i}{25-1} = \frac{5+i}{24}$$
$$= \frac{5}{24} + \frac{1}{24}i$$

**Question**: Express  $X, Y, and |z|^2$  in terms of Re(z) and Im(z)

#### Solution:

$$z = x + iy ...(1)$$

$$\overline{z} = x - iy \dots (2)$$

Add (1) and (2),

$$z + \bar{z} = 2x \Longrightarrow X \equiv Re(z) = \frac{z + \bar{z}}{2}$$

Now, subtract (1) and (2),

$$z = x + iy$$

$$\overline{z} = x - iy$$

$$z - \overline{z} = 2yi \Longrightarrow Y \equiv Im(z) = \frac{z - \overline{z}}{2i}$$

$$|z|^2 = zz^* = x^2 + y^2 = (Re(z))^2 + (Im(z))^2$$

## Basic of algebraic properties of z, verify a few algebraic properties of z.

1. The commutative laws.

$$z_1 \pm z_2 = z_2 \pm z_1$$
,  $z_1 z_2 = z_2 z_1$ 

2. The associative laws

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3), (z_1 z_2) z_3 = z_1 (z_2 z_3)$$

Now,

$$\frac{1}{z_1 z_2} = \left(\frac{1}{z_1}\right) \left(\frac{1}{z_2}\right), \quad (z_1 \neq 0, z_2 \neq 0, z_1 z_2 \neq 0)$$

$$\frac{z_1 + z_2}{z_3} = \frac{z_1}{z_3} + \frac{z_2}{z_3}, \quad \frac{z_1}{z_1 z_4} = \left(\frac{z_1}{z_2}\right) \left(\frac{z_2}{z_4}\right), \quad (z_3 \neq 0, z_4 \neq 0, z_3, z_4 \neq 0)$$

## Absolute value of Z

With that interpretation in mind, we introduce the length, amplitude, absolute value or modulus of the complex number its the length when thinking of it as a vector:

If 
$$z = x + iy$$
 then  $|z| = \sqrt{X^2 + y^2}$   
|z| is the distance between the point  $(x, y)$  and the origin.

### Example:

Compute the absolute value for each of the complex numbers:

$$z_1 = 1 + i$$
,  $z_2 = 2 - 3i$ , find  $|z_1 - z_2|$ 

#### Solution:

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
  
=  $\sqrt{(1 - 2)^2 + (1 + 3)^2} = \sqrt{1^2 + 4^2} = \sqrt{17}$