

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

Module Title: Fundamental of Electrical Engineering (AC)

Module Code: UOMU024021

Week (2)

1. THE SINE WAVE

The sinusoidal waveform is the only alternating waveform whose shape is unaffected by the response characteristics of R, L, and C elements. In other words, if the voltage across (or current through) a resistor, coil, or capacitor is sinusoidal in nature, the resulting current (or voltage, respectively) for each will also have sinusoidal characteristics.

Degrees =
$$\left(\frac{180^{\circ}}{\pi}\right) \times \text{(radians)}$$

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

1.1 Angles and Radians:

90°: Radians =
$$\frac{\pi}{180^{\circ}}$$
(90°) = $\frac{\pi}{2}$ rad

30°: Radians =
$$\frac{\pi}{180^{\circ}}$$
(30°) = $\frac{\pi}{6}$ rad

$$\frac{\pi}{3}$$
 rad: Degrees $=\frac{180^{\circ}}{\pi}\left(\frac{\pi}{3}\right) = 60^{\circ}$

$$\frac{3\pi}{2}$$
 rad: Degrees = $\frac{180^{\circ}}{\pi} \left(\frac{3\pi}{2} \right) = 270^{\circ}$

Angular velocity: The velocity, with which the radius vector rotates about the center, can be determined from the following equation:

Angular velocity =
$$\frac{\text{distance (degrees or radians)}}{\text{time (seconds)}}$$

$$\omega = \frac{2\pi}{T} \qquad \text{(rad/s)}$$

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

2.GENERAL FORMAT FOR THE SINUSOIDAL VOLTAGE OR CURRENT

The basic mathematical format for the sinusoidal waveform is:

where Am is the peak value of the waveform and α is the unit of measure for the horizontal axis.

$$\alpha = \omega t$$

For electrical quantities such as current and voltage, the general format is:

$$i = I_m \sin \omega t = I_m \sin \alpha$$

 $e = E_m \sin \omega t = E_m \sin \alpha$

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

2. EXAMPLES AND SOLVED PROBLEMS

EXAMPLE: Given $e = 5 \sin \alpha$, determine e at $\alpha = 40^{\circ}$ and $\alpha = 0.8 \pi$.

Solution:

For $\alpha = 40^{\circ}$,

$$e = 5 \sin 40^{\circ} = 5(0.6428) = 3.214 \text{ V}$$

For $\alpha = 0.8\pi$.

$$\alpha \ (^{\circ}) = \frac{180^{\circ}}{\pi} \ (0.8\pi) = 144^{\circ}$$

and

$$e = 5 \sin 144^{\circ} = 5(0.5878) = 2.939 \text{ V}$$

EXAMPLE: Sketch $e = 10 \sin 314 t$ with the abscissa

- a. angle (α) in degrees.
- b. angle (α) in radians.
- c. time (t) in seconds.

Solution:

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

c.
$$360^{\circ}$$
: $T = \frac{2\pi}{\omega} = \frac{2\pi}{314} = 20 \text{ ms}$
 180° : $\frac{T}{2} = \frac{20 \text{ ms}}{2} = 10 \text{ ms}$
 90° : $\frac{T}{4} = \frac{20 \text{ ms}}{4} = 5 \text{ ms}$
 30° : $\frac{T}{12} = \frac{20 \text{ ms}}{12} = 1.67 \text{ ms}$

$$T = 20 \text{ ms}$$

$$0 = 1.67 = 5$$

$$t \text{ (ms)}$$

EXAMPLE: Given $i = 6 * 10^{-3} \sin 1000 t$, determine i at t = 2 ms.

Solution:

$$\alpha = \omega t = 1000t = (1000 \text{ rad/s})(2 \times 10^{-3} \text{ s}) = 2 \text{ rad}$$

$$\alpha (^{\circ}) = \frac{180^{\circ}}{\pi \text{ rad}} (2 \text{ rad}) = 114.59^{\circ}$$

$$i = (6 \times 10^{-3})(\sin 114.59^{\circ})$$

= (6 mA)(0.9093) = 5.46 mA

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

PHASE RELATIONS

* If the waveform passes through the horizontal axis with a positive going (increasing with time) slope before 0°.

$$A_m \sin(\omega t + \theta)$$

* If the waveform passes through the horizontal axis with a positive-going slope $after 0^{\circ}$,

$$A_m \sin(\omega t - \theta)$$

* If the waveform crosses the horizontal axis with a positive-going slope $90^{\circ}(\pi/2)$ sooner, it is called a *cosine wave*.

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

$$\sin(\omega t + 90^{\circ}) = \sin\left(\omega t + \frac{\pi}{2}\right) = \cos \omega t$$

EXAMPLE 13.12 What is the phase relationship between the sinusoidal waveforms of each of the following sets?

a.
$$v = 10 \sin(\omega t + 30^{\circ})$$

$$i = 5 \sin(\omega t + 70^\circ)$$

b.
$$i = 15 \sin(\omega t + 60^{\circ})$$

$$v = 10 \sin(\omega t - 20^\circ)$$

c.
$$i = 2 \cos(\omega t + 10^\circ)$$

$$v = 3 \sin(\omega t - 10^{\circ})$$

d.
$$i = -\sin(\omega t + 30^\circ)$$

$$v = 2 \sin(\omega t + 10^{\circ})$$

e.
$$i = -2 \cos(\omega t - 60^\circ)$$

$$v = 3 \sin(\omega t - 150^{\circ})$$

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

Solutions:

a) / leads v by 40°, or v lags / by 40°.

b) i leads v by 80°, or v lags i by 80°.

Al-Mustaqbal University

Medical Instrumentation Techniques Engineering Department Semester 2

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

c)
$$i = 2\cos(\omega t + 10^{\circ}) = 2\sin(\omega t + 10^{\circ} + 90^{\circ}) \\ = 2\sin(\omega t + 100^{\circ})$$

i leads v by 110°, or v lags i by 110°.

d)

$$-\sin(\omega t + 30^{\circ}) = \sin(\omega t + 30^{\circ} - 180^{\circ})$$

 $= \sin(\omega t - 150^{\circ})$

v leads i by 160°, or i lags v by 160°.

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

However,

$$\cos \alpha = \sin(\alpha + 90^\circ)$$

so that
$$2\cos(\omega t - 240^\circ) = 2\sin(\omega t - 240^\circ + 90^\circ)$$

= $2\sin(\omega t - 150^\circ)$

v and i are in phase.

AVERAGE VALUE (mean)

The average value of alternating waveform is the equivalent (DC) value over a complete cycle. In general the average value of a waveform is given as:

$$G ext{ (average value)} = \frac{\text{algebraic sum of areas}}{\text{length of curve}}$$

EXAMPLE: Determine the average value of the waveforms

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

Solutions:

a) By inspection, the area above the axis equals the area below over one cycle, resulting in an average value of zero volts.

$$G = \frac{(10 \text{ V})(1 \text{ ms}) - (10 \text{ V})(1 \text{ ms})}{2 \text{ ms}}$$

$$= \frac{0}{2 \text{ ms}} = 0 \text{ V}$$
b)
$$G = \frac{(14 \text{ V})(1 \text{ ms}) - (6 \text{ V})(1 \text{ ms})}{2 \text{ ms}}$$

$$= \frac{14 \text{ V} - 6 \text{ V}}{2} = \frac{8 \text{ V}}{2} = 4 \text{ V}$$

EXAMPLE 4: The area of sine wave (for one half) can be calculated by the following:

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

EXAMPLE 5: Determine the average value of the sinusoidal waveform.

Solutions:

The average value of a pure sinusoidal waveform over one full cycle is zero.

$$G = \frac{+2A_m - 2A_m}{2\pi} = \mathbf{0} \,\mathbf{V}$$

EXAMPLE 6: Determine the average value of the waveform.

EXAMPLE: Determine the average value of the waveform

Electrical Engineering Fundamentals AC Lecturer: Dr. Tarik Raoof Al-Khateeb

Solutions:

The peak-to-peak value of the sinusoidal function is 16 mV + 2 mV = 18 mV. The peak amplitude of the sinusoidal waveform is, therefore, 18 mV/2 = 9 mV. Counting down 9 mV from 2 mV (or 9 mV up from -16 mV) results in an average or dc level of -7 mV.

EXAMPLE 7: Determine the average value of the waveform .

Solutions:

$$G = \frac{2A_m + 0}{2\pi} = \frac{2(10 \text{ V})}{2\pi} \cong 3.18 \text{ V}$$