

Al-Mustaqbal University College of Engineering & Technology

Computer Techniques Engineering Department

Digital Communication

Lecture 10 Binary Frequency Shift Keying (BFSK)

Dr. Ahmed Hasan Al-Janabi PhD in Computer Network

Email: Ahmed.Janabi@uomus.edu.iq

Introduction to BFSK

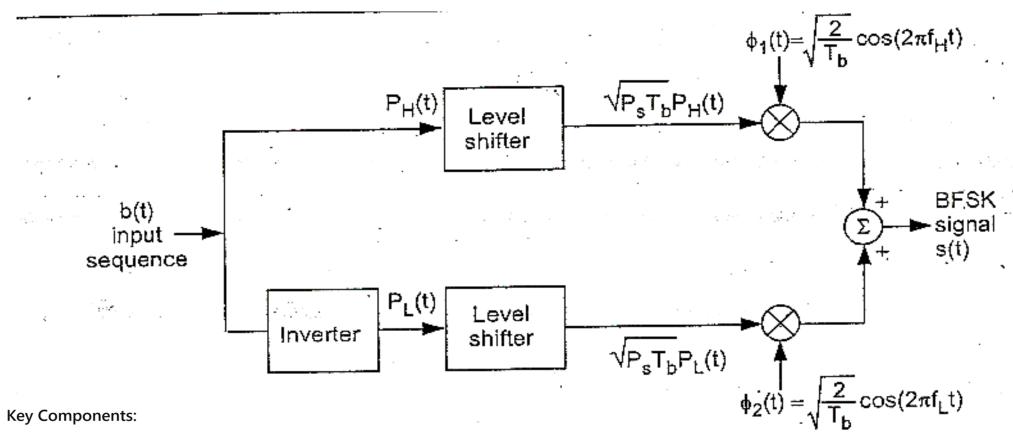
- BFSK is a digital modulation technique.
- The carrier frequency shifts based on binary input.
- ullet Two frequencies: $f_0+rac{\Omega}{2\pi}$ for "1" and $f_0-rac{\Omega}{2\pi}$ for "0".
- Used in low-power and noise-resistant communication systems.

Mathematical Representation

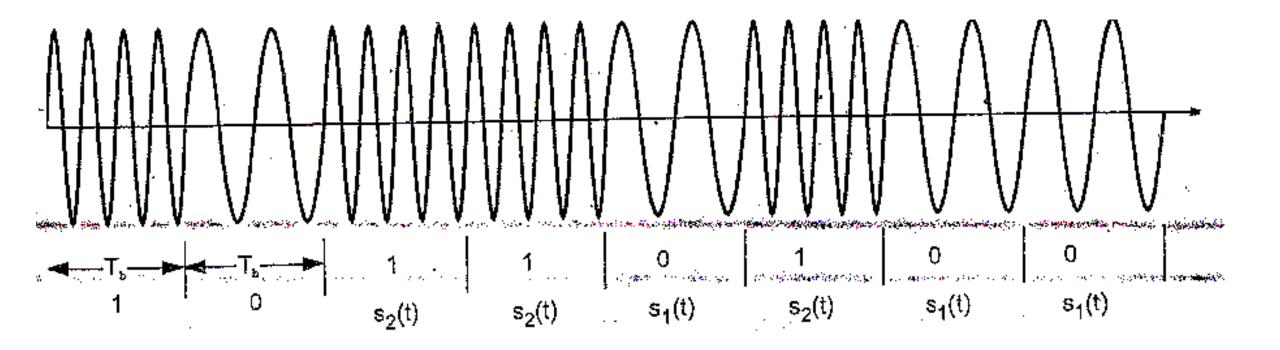
• If bit = 1:
$$s(t) = \sqrt{2P_s}\cos(2\pi f_0 + \Omega)t$$

• If bit = 0:
$$s(t) = \sqrt{2P_s}\cos(2\pi f_0 - \Omega)t$$

• Combined equation:


$$s(t) = \sqrt{2P_s}\cos(2\pi f_0 + d(t)\Omega)t$$

• d(t) represents the binary data signal.


BFSK Generation

- The BFSK generator consists of:
 - 1. Input Sequence (t)
 - 2. Inverter Circuit
 - 3. Level Shifter
 - 4. Two Product Modulators
- The level shifter maps "1" to $\sqrt{P_s}$ and "0" to 0.
- Modulators generate frequency shifts based on input.

BFSK Block Diagram (Generation)

- - Input sequence $P_H(t)$, inverter to $P_L(t)$.
 - Two orthogonal carriers $\phi_1(t)$ and $\phi_2(t)$.
 - Output signal generated via product modulation.

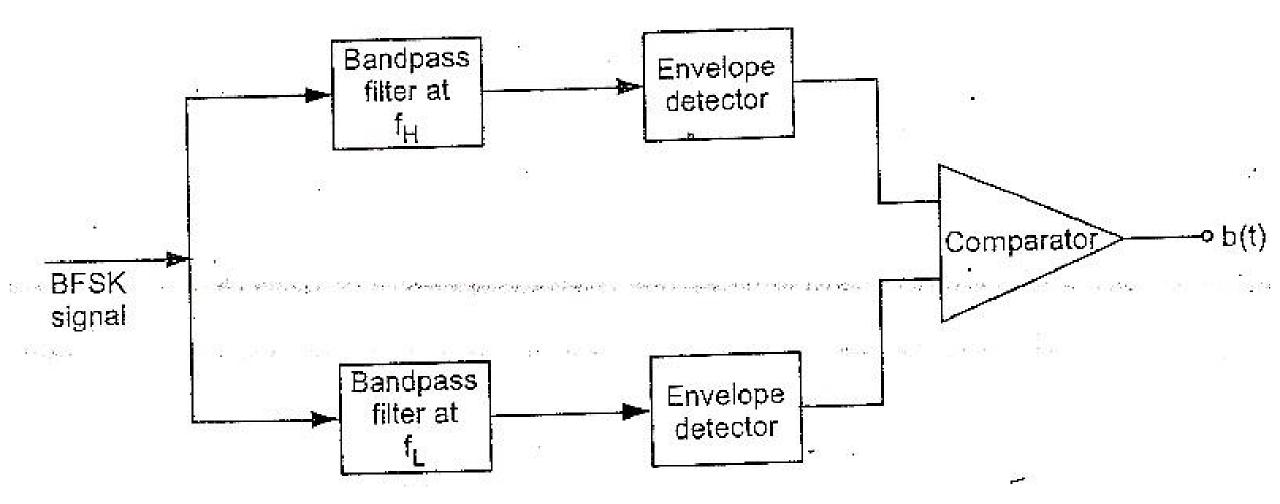
BFSK Spectrum and Bandwidth

• The BFSK signal equation:

$$s_{BP}(t)=\sqrt{2P_b}(t)\cos(2\pi f_0 t)$$

- ullet The spectrum shows two peaks at f_H and f_L .
- Bandwidth:

$$BW=4f_b$$


BFSK bandwidth is twice that of BPSK.

- The width of each lobe is $2f_b.$
- BFSK uses more bandwidth than BPSK.

BFSK Detection

- BFSK detection uses:
 - 1. Two Bandpass Filters centered at f_H and f_L .
 - 2. **Envelope Detectors** to extract the signal.
 - 3. **Comparator** to decide bit value.
- The frequency separation ensures minimal overlap.

BFSK Block Diagram (Detection)

Advantages of BFSK

- 1. Simple to implement and generate.
- 2. More resistant to noise than ASK.

3. Better performance in low-power applications.

Disadvantages of BFSK

- 1. Requires twice the bandwidth of BPSK.
- 2. Only half the transmitted energy carries useful information.
- Not as power-efficient as PSK techniques.

How to Prove Only half the transmitted energy carries useful information.

$$(t) = \sqrt{2P_s}\cos(2\pi f_0 + d(t)\Omega) t$$

$$(t) = \sqrt{2P_s}\cos(d(t)\Omega)\cos(2\pi f_0 t) - \sqrt{2P_s}\sin(d(t)\Omega)\sin(2\pi f_0 t)$$
Since $(t) = \pm 1$ \therefore $\cos(\pm\Omega t) = \cos(\Omega t)$

$$And \qquad s\{\pm\Omega t\} = \pm \sin(\Omega t) = d(t)\sin(\Omega t)$$

$$s(t) = \sqrt{2P_s}\cos(\Omega t)\cos(2\pi f_0 t) - \sqrt{2P_s}d(t)\sin(\Omega t)\sin(2\pi f_0 t)$$

Form above equation it is clear that only second term carry information, thus half the transmitted energy carries information signal.

BFSK vs. BPSK

- Bandwidth: BFSK requires 2 imes BW(BPSK).
- Power Efficiency: BPSK transmits more power efficiently.
- Complexity: BFSK is simpler but less power-efficient.

Conclusion

- BFSK shifts carrier frequency based on input data.
- Generation involves modulating two separate frequencies.
- Detection uses bandpass filters and envelope detectors.
- BFSK is simple but requires higher bandwidth.

Thank You