

Ministry of Higher Education and Scientific Research AL-Mustaqbal University College of Science Department of biology

Organic Chemistry

Lecture 1

Introduction to Organic Chemistry

By
Dr. Assel Amer Hadi

Introduction:-

- ➤ Organic chemistry is the branch of chemistry that deals with carbon and its compounds. It is fundamental to biology and medicine.
- ➤ Organic chemistry is the chemistry of carbon, an element that forms strong chemical bonds to other carbon atoms as well as to many other elements like hydrogen, oxygen, nitrogen, and the halogens.
- ➤ Organic chemicals were used in ancient times by Romans and Egyptians as dyes, medicines and poisons from natural sources, but the chemical composition of the substances was unknown.

Nomenclature

1- Find the longest carbon chain in the molecule. This will give you the base of the name:

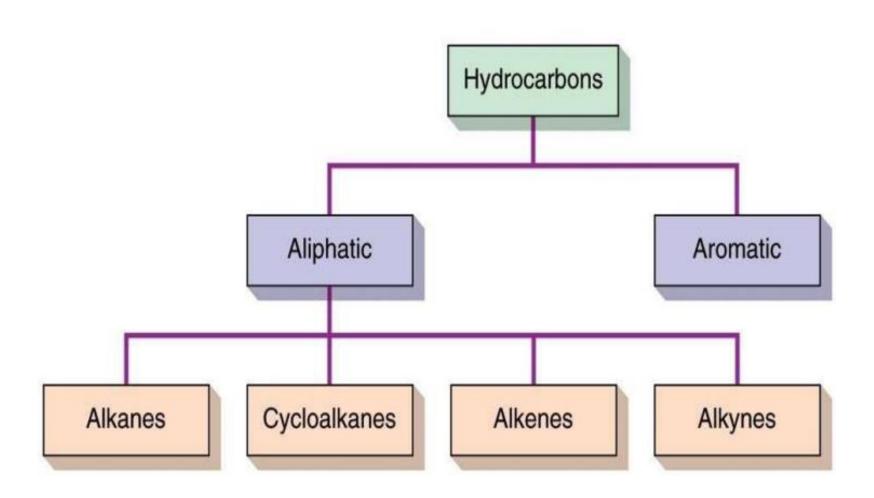
No of C atoms	Name
1	meth-ane
2	eth-ane
3	prop-ane
4	but-ane
5	pent-ane
6	hex-ane
7	hept-ane
8	oct-ane
9	non-ane
10	dec- <i>ane</i>

2- Determine the principle functional group and its position.

principal functional group	formula	ending becomes
alkane	C-C	-ane
alkene	C=C	-ene
alkyne	C≡C	-yne
alcohol	-OH	-anol
aldehyde	-CH=O	-anal
ketone	>C=O	-anone
carboxylic acid	-COOH	-anoic acid

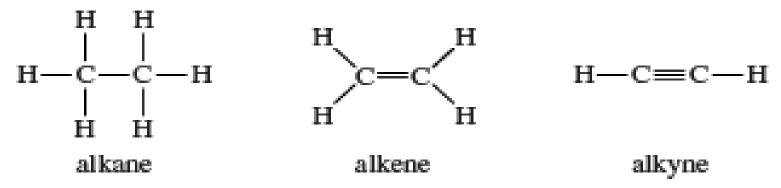
- ❖ Position is indicated, where necessary, by numbering the carbons in the main chain.
- ❖ Position need not be indicated for alkanes, as they have no functional group, and aldehydes and acids, as they are terminal functional groups.
- ❖ Positioning numbers are flanked by dash signs.

 Multiple positions for a given functional group are separated by commas and indicated by the prefixes di, tri, tetra, penta, hexa, hepta, octa, nona and deca.


Anciliary functional groups are given in alphabetical order, with their position at the beginning of the name.

ancilliary functional group	formula	prefix
methyl	-CH ₃	methyl
ethyl	-C ₂ H ₅	ethyl
propyl	-C ₃ H ₇	propyl
butyl	-C ₄ H ₉	butyl
pentyl	-C ₅ H ₁₁	pentyl
hexyl	-C ₆ H ₁₃	hexyl
heptyl	-C ₇ H ₁₅	heptyl
octyl	-C ₈ H ₁₇	octyl
nonyl	-C ₉ H ₁₉	nonyl
decyl fluorine chlorine	-C ₉ H ₁₉ -C ₁₀ H ₂₁ -F -CI	decyl fluoro chloro
bromine	-Br	bromo
iodine	-I	iodo
amine	-NH ₂	amino
cyanide benzyl	-OH -CN -CH ₂ C ₆ H ₅	cyano benzyl
phenyl	-C ₆ H ₅	phenyl

Hydrocarbons


- > Hydrocarbons are the most simple organic compounds.
- > Hydrocarbons contain only carbon (C) and hydrogen (H.)
- ➤ Hydrocarbons can undergo reactions that release a large amount of energy.
- > Hydrocarbons can be divided into aromatic and aliphatic hydrocarbons.
- ➤ The carbon atoms join together to form the framework of the compound, and the hydrogen atoms attach to them in many different configurations. chemical compound.

Classification of Hydrocarbon

Structures of Representative Hydrocarbons

aliphatic hydrocarbons

aromatic hydrocarbons

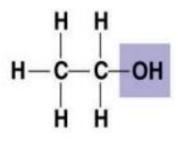
Functional Groups:-

- Functional groups are the
 components of organic molecules
 that are most commonly involved
 in chemical reactions.
- 2. The number and arrangement of functional groups give each molecule its unique properties.

Functional Group Name	Suffix Ending	Functional Group Structure
Alkane	-ane	C-H atoms
Alcohol	-ol	OH
Alkene	-ene	C=C
Alkyne	-yne	нс≡сн
Aldehyde	-al	—с—н П
Amine	-amine	N
Ether	-ether	0
Ester	-oate	
Ketone	-one	c_
Nitrile	-ile	—c≡n

Hydrocarbon Derivatives

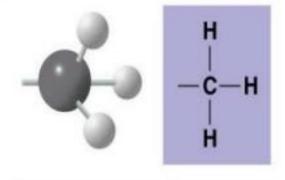
Hydroxyl


STRUCTURE

-он

(may be written HO—) Alcohols (Their specific names usually end in -ol.) NAME OF COMPOUND

EXAMPLE



Ethanol

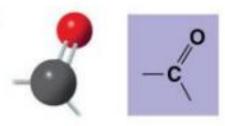
- Is polar as a result of the electrons spending more time near the electronegative oxygen atom.
- Can form hydrogen bonds with water molecules, helping dissolve organic compounds such as sugars.

Methyl

STRUCTURE

Methylated compounds

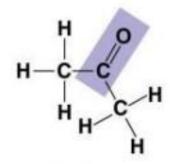
NAME OF COMPOUND


EXAMPLE

5-Methyl cytidine

- Addition of a methyl group FUNCTIONAL to DNA, or to molecules PROPERTIES bound to DNA, affects the expression of genes.
- Arrangement of methyl groups in male and female sex hormones affects their shape and function.

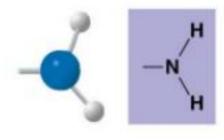
Carbonyl


STRUCTURE

Ketones if the carbonyl group is within a carbon skeleton NAME OF COMPOUND

Aldehydes if the carbonyl group is at the end of the carbon skeleton

EXAMPLE



Acetone

- A ketone and an aldehyde may be structural isomers with different properties, as is the case for acetone and propanal.
- Ketone and aldehyde groups are also found in sugars, giving rise to two major groups of sugars: ketoses (containing ketone groups) and aldoses (containing aldehyde

Amino

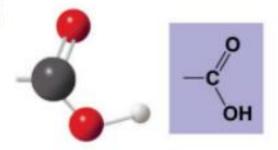
STRUCTURE

Amines

NAME OF COMPOUND

EXAMPLE

Glycine

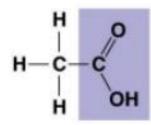

 Acts as a base; can pick up an H⁺ from the surrounding solution (water, in living organisms):

H++-N = -+N-H
H H
Nonionized Ionized

 Found in cells in the ionized form with a charge of 1+.

Carboxyl

STRUCTURE



Carboxylic acids, or organic acids

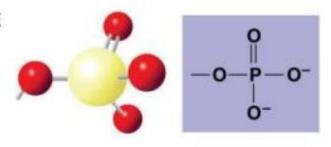
NAME OF COMPOUND

EXAMPLE

Acetic acid

 Acts as an acid; can donate an H⁺ because the covalent bond between oxygen and hydrogen is so polar;

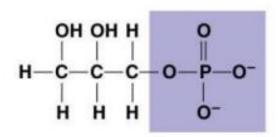
$$-c$$
 \rightleftharpoons $-c$ $+$ H^+


Nonionized

Ionized

 Found in cells in the ionized form with a charge of 1– and called a carboxylate ion.

Phosphate


STRUCTURE

Organic phosphates

NAME OF COMPOUND

EXAMPLE

Glycerol phosphate

- Contributes negative charge to the molecule of which it is a part (2– when at the end of a molecule, as at left; 1– when located internally in a chain of phosphates).
- Molecules containing phosphate groups have the potential to react with water, releasing energy.

