
Al-Mustaqbal University 

Department of Medical Instrumentation Techniques Engineering 

Class: Third 

Subject: Medical Communication Systems 

Lecturer: Prof. Adnan Ali 

Lecture:10 
  

1 

 

 

 

Mode Unit 8 

Applications of Operational Amplifiers 

(Part 3) 

For 

Students of Third Stage 
Department of Medical Instrumentation Techniques Engineering 

 

 
 

By 

 
Prof. Dr Adnan Ali 

Dep. Medical 

Instrumentation Techniques 

Engineering 

 

 

2025 



Al-Mustaqbal University 

Department of Medical Instrumentation Techniques Engineering 

Class: Third 

Subject: Medical Communication Systems 

Lecturer: Prof. Adnan Ali 

Lecture:10 
  

2 

 

1. Overview 

 
a. Target population: 

For students of third class of Department of Medical Instrumentation Techniques 

Engineering, Electrical Engineering Technical College, Middle Technical University, 

Baghdad, Iraq. 

 

b. Rationale: 

An operational amplifier (often op amp or Op-Amp) is a DC-coupled high-gain electronic 

voltage amplifier with a differential input and, usually, a single-ended output. In this 

configuration, an op amp produces an output potential (relative to circuit ground) that is 

typically 100,000 times larger than the potential difference between its input terminals. 

Operational amplifiers had their origins in analog computers, where they were used to 

perform mathematical operations in linear, non-linear, and frequency-dependent circuits. 

 
c. Objectives: 

The student will be able after finishing lecture on: 
 

 Draw the waveform of Operational Amplifier (Op-Amp). 

 Identify the main types of Operational Amplifier (Op-Amp). 
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Lecture 02 Applications of Operational Amplifiers 
 

Exercise 2-8: 
It is desired to measure a dc current that ranges from 0 to 1 mA using an ammeter whose 

most sensitive range is 0 to 10 mA. To improve the measurement accuracy, the current to 

be measured should be amplified by a factor of 10. 

(a)  Design the circuit. 

(b) Assuming that the meter resistance is 150 Ω and the maximum output voltage of the 

amplifier is 15 V, verify that the circuit will perform properly. 

[Answers: (a) Fig. 2-14, k = IL/IX = 1+ R2/R1 = 10 as required, 

(b) Rmeter = 150 Ω < RL = 600 Ω] 
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Operation amplifier 
(part 3) 

 
Integrator Op-Amp 

Differentiator Op-Amp 

 
 
 

2.4 Op-Amp Integrators: 
An electronic integrator is a device that produces an output waveform whose value at any 

instant of time equals the total area under the input waveform up to that point in time. 

A mathematical integration, the process produces the time varying function ∫ tvindt. 

To illustrate this concept, suppose the input to an electronic integrator is the dc level E 

volts, which is first connected to integrator at an instant of time we will call t = 0. Refer to 

Fig. 2-15. The plot of the dc "waveform" versus time is simply a horizontal line at level E 

volts, since the dc voltage is constant. The more time that we allow to pass, the greater the 

area that accumulates under the dc waveform. At any time-point t, the total area under the 

input waveform between time 0 and time t is (height) × (width) = Et, volts, as illustrated in 

figure. For example, if E = 5 V dc, then the output will be 5 V at t = 1 s, 10 V at t = 2 s, 

15 V at t = 3 s, and so forth. We see that the output is the ramp voltage v(t) = Et. 
 

Fig. 2-15 
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Fig. 2-16 shows how an electronic integrator is constructed using an operational 

amplifier. The component in the feedback path is capacitor C, and the amplifier is operated 

in an inverting configuration. To represent integration of the voltage v between time 0 and 

time t, we are assuming zero input offset, the output of this circuit is 
vo(t) = 

-1 
∫

t 
vindt [2-20] 

  C  0 

This equation shows that the output is the (inverted) integral of the input, multiplied by the 

constant l/R1C. If this circuit were used to integrate the dc waveform shown in Fig. 2-15, 

the output would be a negative-going ramp (vo = −Et/R1C). 

 

Fig. 2-16 

 

Now we demonstrate why the circuit of Fig. 2-16 performs integration. Since the 

current into the − input is 0, we have, from Kirchhoff's current law; 

i1 + iC = 0, 
where i1 is the input current through R1 and iC is the feedback current through the 

capacitor. Since v− = 0, the current in the capacitor is 
iC = C dvo =>  

vin + C dvo = 0  or  
dvo = -1 vin. 

dt dt dt   C 

Integrating both sides of the last equation with respect to t, we obtain 
vo(t) = -1 ∫t vindt. 

 

  C  0 

It can be shown, using calculus, that the mathematical integral of the sine wave 

A sin ωt is 

∫(A sin wt) dt = 
-A 

sin(wt + 90) = 
-A 

cos(wt). 

Therefore, if the input to the inverting integrator in Fig. 2-16 is vin = A sin ωt, the output is 

[2-21] 

The most important fact revealed by Eqn. [2-21] is that the output of an integrator with 

sinusoidal input is a sinusoidal waveform whose amplitude is inversely proportional to its 

frequency. This observation follows from the presence of ω (= 2πƒ) in the denominator of 

Eqn. [2-21]. 

A gain magnitude is the ratio of the peak value of the output to the peak value of the 

input: 

 
This equation clearly shows that gain is inversely proportional to frequency. 

 
[2-22] l vo l = 

A 1 

vin A   C   C 
= 

vo = 
-1 

∫(A sin wt) dt = 
  C 

-A 

   C 
(−coswt) = 

A 

   C 
coswt 
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Although high-quality, precision integrators are constructed as shown in Fig. 2-16 

for use in low-frequency applications such as analog computers, these applications require 

high-quality amplifiers with extremely small offset voltages. As mentioned earlier, any 

input offset is integrated as if it were a dc signal input and will eventually cause the 

amplifier to saturate. To eliminate this problem in practical integrators using general 

purpose amplifiers, a resistor is connected in parallel with the feedback capacitor, as 

shown in Fig. 2-17. Since the capacitor is an open circuit as dc is concerned, the dc closed- 

loop gain of the integrator is –Rf/R1. At high frequencies, XC is much smaller than Rf, so 

the parallel combination of C and Rf is essentially the same as C alone, and signals are 

integrated as usual. 
 

Fig. 2-17 
 

While the feedback resistor in Fig. 2-17 prevents integration of dc inputs, it also 

degrades the integration of low-frequency signals. At frequencies where the capacitive 

reactance of C is comparable in value to Rf, the net feedback impedance is not 

predominantly capacitive and true integration do es not occur. As a rule, we can say that 

satisfactory integration will occur at frequencies much greater than the frequency at which 

XC = Rf. That is, for integrator action we want 

X  << R => 
1

 
2rrfC 

<< Rf =>  

[2-23] 

The frequency fc where XC = Rf, 

[2-24] 

Eqn. [2-24] defines a break frequency, fc, in the Bode plot of the practical integrator. 

As shown in Fig. 2-18, at frequencies well above fc, the gain falls off at the rate of 

−20 dB/decade, like that of an ideal integrator, and at frequencies below fc, the gain 

approaches its dc value of Rf/R1. Because the integrator's output amplitude or gain 

decreases with frequency, it is a kind of low-pass filter. 

f >> 
1 

2rr fC 

fc = 
1 

2rr fC 
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vo = − 
1 

  C 
∫ v1dt − ∫ v2dt − ∫ v3dt 

1 1 

 ZC  3C 

o 1 2 

 C 

 

 

Fig. 2-18 
 

In closing our discussion of integrators, we should note that it is possible to scale 

and integrate several input signals simultaneously, using an arrangement similar to the 

linear combination circuit studied earlier. Fig. 2-19 shows a practical, three-input 

integrator that performs the following operation at frequencies above fc: 

v  = −∫ ( 
1

 
  C 

v +  1 
 ZC 

v  +  1 
 3C 

v3) dt  

[2-25] 

If R1 = R2 = R3 = R, then 

vo = 
-1 

∫(v1 + v2 + v3)dt [2-26] 

 

Fig. 2-19 
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Exercise 2-9: 
(a) Find the peak value of the output of the ideal integrator shown in Fig. 2-20. The 

input is vin = 0.5 sin (100t) V. 

(b) Repeat, when vin = 0.5 sin (103t) V. 

[Answers: (a) vo = 5 cos (100t) V => peak value = 5 V, 

(b) vo = 0.5 cos (1000t) V => peak value = 0.5 V] 

 

Fig. 2-20 

 

Exercise 2-10: 
Design a practical integrator that 

(a) integrates signals with frequencies down to 100 Hz, and 

(b) produces a peak output of 0.1 V when vin is a 10 V peak sine wave at frequency 

10 kHz. Choose C = 0.01 µF. 

Find the dc component in the output when there is a +50 mV dc input. 

[Answer: Rf = 1.59 MΩ, R1 = 159 kΩ, Rc = 145 kΩ, vo = − 0.5 V, Fig. 2-21] 
 

Fig. 2-21 
 

 
 



Ex: An integrator circuit shown below, has R=100K and C 20 Micro F. Determine the output voltage 
 

when the input DC voltage of 10mv is applied. 
 

Ans: 
 

𝑡 
1 

𝑉0 = − 
𝑅𝐶 

∫ 𝑉𝑖𝑛 𝑑𝑡 

0 

𝑡 

𝑉0 
1 

= − 
100 × 103 × 20 × 10−6 

∫ 5 × 10−3 𝑑𝑡 = −5𝑡 𝑚𝑉 

0 

 
 
 

 

Ex: for the following circuit, find Vo 
 

 
Ans: 

 

𝑡 𝑡 
1 1 

𝑉0 = − 
𝑅 𝐶 

∫ 𝑉1 𝑑𝑡 + (− 
𝑅 𝐶 

∫ 𝑉2 𝑑𝑡) 
1 2 

0 0 

𝑡 𝑡 
1 1 

𝑉0 = − 
𝑅 𝐶 

∫ 10𝑐𝑜𝑠2𝑡 𝑑𝑡 − 
𝑅 𝐶 

∫ 0.5𝑡 𝑑𝑡 
1 2 

0 0 

5 5  2 

𝑉0 = − 
6 
𝑠𝑖𝑛2𝑡 − 

4 
𝑡 mV 



Ex: For the following circuit, draw the waveforms 
 

 

 
 

Answer in Multisim: 
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o f 

dt 

 

2.5 Op-Amp differentiators: 
An electronic differentiator produces an output waveform whose value at any instant of 

time is equal to the rate of change of the input at that point in time. Fig. 2-22 demonstrates 

the operation of an ideal electronic differentiator. The input is the ramp voltage vin = Et. 

The rate of change, or slope, of this ramp is a constant E volts/second. Since the rate of 

change of the input is constant, we see that the output of the differentiator is the constant 

dc level E volts. We would write 

[2-27] 
 
 

Fig. 2-22 

 

Fig. 2-23 shows how an ideal differentiator is constructed using an operational 

amplifier. Note that we no w have a capacitive input and a resistive feedback-again, just the 

opposite of an integrator. It can be shown that the output of this differentiator is 

v  = −R C dvin 
dt 

[2-28] 

Now, we can show how the circuit of Fig. 2-23 performs differentiation. Since the 

current into the − terminal is 0, we have, from Kirchhoff's current law, iC + if = 0. 

Since v- = 0, vC = vin and iC = C dvin . 

Also, if = vo , so C dvin + vo = 0 or vo = −RfC dvin . 
Rf dt Rf dt 

If the input to the inverting integrator in Fig. 2- 23 is vin = A sin ωt, the output is 
v  = −R C d

(A sinwt) 
= −AwR C cos(wt) = AwR C sin(wt − 90°) [2-29] 

o f dt f f 

Eqn. [2-29] shows that when the input is sinusoidal, the amplitude of the output of a 

differentiator is directly proportional to frequency. Also the output lags the input by 90°, 

regardless of frequency. The gain of the differentiator is 

[2-30] 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2-23 

dvin = 
d(Et) 

= E
 

dt dt 

I I = 
 v o  AwR C f 

vin A 
= wR C f 
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fb = 
1 

2rrRlC 

1 

 

In a practical differentiator, the amplification of signals in direct proportion to their 

frequencies cannot continue indefinitely as frequency increases, because the amplifier has 

a finite bandwidth. As we have already known, there is some frequency at which the 

output amplitude must begin to fall off. Nevertheless, it is often desirable to design a 

practical differentiator so that it will have a break frequency even lower than that 

determined by the upper cutoff frequency of the amplifier, that is, to roll off its gain 

characteristic at some relatively low frequency. This action is accomplished in a practical 

differentiator by connecting a resistor in series with the input capacitor, as shown in 

Fig. 2-24. We can understand how this modification achieves the stated goal by 

considering the net impedance of the R1C combination at low and high frequencies: 

Zin = R1 − j⁄wC => 

|Zin| = JR2 + (1⁄wC)2 . 

At very small values of ω, Zin, is dominated by the capacitive reactance component, so the 

combination is essentially the same as C alone, and differentiator action occurs. At very 

high values of ω, 1/ωC is negligible, so Zin is essentially the resistance R1, and the circuit 

behaves like an ordinary inverting amplifier. 

 

Fig. 2-24 

 

The break frequency fb beyond which differentiation no longer occurs in Fig. 2-24 is 

the frequency at which XC = R1: 

=> [2-31] 

In designing a practical differentiator, the break frequency should be set well above the 

highest frequency at which accurate differentiation is desired: 

fb >> fh [2-32] 
where fh is the highest differentiation frequency. Fig. 2-25 shows Bode plots for the gain 

of the ideal and practical differentiators. In the low-frequency region where differentiation 

occurs, note that the gain rises with frequency at the rate of 20 dB/decade. The plot shows 

that the gain levels off beyond the break frequency fb and then falls off at −20 dB/decade 

beyond the amplifier's upper cutoff frequency. Recall that the closed-loop bandwidth, or 

upper cutoff frequency of the amplifier, is given by 

f2 = /Jft [2-33] 

where β in this case is R1/(R1 + Rf). 

XC = 
1 

2rrfb C 
= R1 
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Exercise 2-11: 

Fig. 2-25 

(a) Design a practical differentiator that will differentiate signals with frequencies up to 

200 Hz. The gain at 10 Hz should be 0.1. Choose fb = 10 fh, and C = 0.1 µF. 

(b) If the operational amplifier used in the design has a unity-gain frequency of 1 MHz, 

what is the upper cutoff frequency of the differentiator? 

[Answer: (a) R1 = 796 Ω, Rf = 15.9 kΩ, Fig. 2-26(a) 

(b) f2 = 47.7 kHz, Fig. 2-26(b)] 
 

(a) 
 

(b) 

Fig. 2-26 
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